TIFF

Revision 6.0

Final — June 3, 1992

Aldus Developers Desk

Aldus Corporation
411 First Avenue South
Seattle, WA 98104-2871

CompuServe: GO ALDSVC, Message Section #10
Applelink: Aldus Developers Icon

For a copy of the TIFF 6.0 specification, call (206) 628-6593.

If you have questions about the contents of this specification, see page 8.

160-640M

TIFF 6.0 Specification

Final—June 3, 1992

Copyright

[0 1986-1988, 1992 Aldus Corporation. Permission to copy without feeall or part
of thismaterial isgranted provided that the copies are not made or distributed for
direct commercial advantage and the Aldus copyright notice appears. If the major-
ity of the document is copied or redistributed, it must be distributed verbatim,
without repagination or reformatting. To copy otherwise requires specific permis-
sion from the Aldus Corporation.

Licenses and Trademarks

Aldusand PageMaker areregistered trademarks and TIFF isatrademark of Aldus
Corporation. Apple and Macintosh are registered trademarks of Apple Compuiter,
Inc. MS-DOS isaregistered trademark of Microsoft Corporation. UNIX isa
trademark of Bell Laboratories. CompuServeisaregistered trademark of
CompuServe Inc. PostScript isaregistered trademark of Adobe SystemsInc. and
all referencesto PostScript in this document are referencesto either the PostScript
interpreter or language. Kodak and PhotoY CC are trademarks of Eastman K odak
Company.

Rather than put atrademark symbol in every occurrence of other trademarked
names, we state that we are using the names only in an editorial fashion, and to the
benefit of the trademark owner, with no intention of infringement of the trade-
mark.

Acknowledgments
This specification isthe result of much hard work by many people.
Some of the sectionsin Part 2 were written by anumber of outside contributors:
Ed Beeman, Hewlett Packard
Nancy Cam, Silicon Graphics
Dennis Hamilton, Xerox
Eric Hamilton, C-Cube
Sam Leffler, Silicon Graphics
Chrisand Dan Sears

Other primary reviewers and TAC meeting participantsinclude representatives
from Apple, Camex, Crosfield, Digital OpticsLimited, Frame, IBM, Interleaf,
Island Graphics, Kodak, Linotype-Hell, Quark, Sun Microsystems, Time Arts,
USWest, and Wang. Many thanksto al for lending their time and talentsto this
effort.

No document thislarge can completely satisfy everyone, but we have al worked
hard to strike an effective balance between power and simplicity, between formal-
ity and approachability, and between flexibility and constraints.

Production Notes
This document was created electronically using Aldus PageMaker™ 4.2.

TIFF 6.0 Specification

Contents

Introductionc.cceeneene..

Part 1: Baseline TIFF.......

Part 2: TIFF Extensions

Final—June 3, 1992

... 4
About this SPeCIfiCAtIONcccooeiiiieeiiee e 4
REVISION NOTES ...t 6
TIFF AdMINiStrationcccccoovviiiiiiiciiciiicsic i 8
Information @nd SUPPOITtcoueeeeieeeeeee e 8
Private Fields and VAIUES...............cccouvmieeiisiiiiie e 8
SUbMIttiNg @ PropoOSalcociuveiiiisiiiiie i 9
The TIFF Advisory COMIMILLEEcccccvvviviciiciiiiiiciic i 9
Other TIFF EXIENSIONSccccuviieiiiiiiie e 9

... 11
SECHION 1: NOLALION ..o 12
SeCtiON 2: TIFF SETUCHUI@........ceveeee e 13
Section 3: BileVel IMAgescoooocouiiiiiiiiiaeeeeeeeeeee e 17
Section 4: Grayscale IMAgESeeeeeeiieeiiiiiiiiiieeeeee e 22
Section 5: Palette-color IMagescccoeeeeeiieieiiiiiieciiieeeaeee e 23
Section 6: RGB Full Color IMagescccoeeeeiiisccciiiiiiieiiaee e 24
Section 7: Additional Baseline TIFF Requirements 26
Section 8: Baseline Field Reference GUIAEccccccovvciiveennunnen. 28
Section 9: PackBitS COMPIeSSIONceeeeieeieeiiiisiiiiiieeaaaae e 42
Section 10: Modified Huffman Compressioncccoccccueeeeeennnnns 43

... 48
Section 11: CCITT Bilevel ENcodingscccccooviieeeiiiieeiiiiians 49
Section 12: Document Storage and Retrieval............ccccccccccovvveuns 55
Section 13: LZW COMPIeSSIONuuuueeeeeiiaaaeeiiaciiiieeaeae e 57
Section 14: Differencing PrediCtorccccccooiiiiociciiiiieeeaaaaeee, 64
Section 15: Tiled IMAQGESoooeeeeiiieeiieee e 66
Section 16: CMYK IMAGESccoooeeeeiiiiiieieae e 69
Section 17: HalftONEHINTSc.oveviiiiiie e 72
Section 18: Associated Alpha Handlingccccooevveiiiiiiinniiis 77
Section 19: Data Sample FOrmMatcccccuuieeeiiisicciiiiiiieieaea e 80
Section 20: RGB Image COIOIMELIYccouiieeeciiiieiiaaieae e 82
Section 21: YCBCE IMAQGEScooooieeeeeeee e 89
Section 22: JPEG COMPIESSIONuueeeeeiiaaieiiiiciiiiieaeaae e 95
Section 23: CIE L*a*b* IMAGESuuvumieeeiiiaeeeeieeiieeeae e 110

... 116
Appendix A: TIFF Tags Sorted by NUMDBErc.cccovvvvciiiinnnn 117
Appendix B: Operating System Considerationsccccc....... 119

... 120

TIFF 6.0 Specification Final—June 3, 1992

Introduction

About this Specification

Thisdocument describes TIFF, atag-based file format for storing and interchang-
ing raster images.

History

Thefirst version of the TIFF specification was published by Aldus Corporationin
thefall of 1986, after a series of meetings with various scanner manufacturers and
software developers. It did not have arevision number but should have been la-
beled Revision 3.0 since there were two major earlier draft releases.

Revision 4.0 contained mostly minor enhancements and wasreleased in April
1987. Revision 5.0, released in October 1988, added support for palette color
images and LZW compression.

Scope

TIFF describesimage datathat typically comesfrom scanners, frame grabbers,
and paint- and photo-retouching programs.

TIFFisnot aprinter language or page description language. The purpose of TIFF
isto describe and store raster image data.

A primary goal of TIFFisto provide arich environment within which applica-
tions can exchange image data. Thisrichnessisrequired to take advantage of the
varying capabilities of scanners and other imaging devices.

Though TIFFisarich format, it can easily be used for smple scanners and appli-
cations aswell because the number of required fieldsissmall.

TIFF will be enhanced on a continuing basis as new imaging needs arise. A high
priority has been given to structuring TIFF so that future enhancements can be
added without causing unnecessary hardship to developers.

TIFF 6.0 Specification

Features

Final—June 3, 1992

TIFF iscapable of describing bilevel, grayscale, palette-color, and full-color
image datain several color spaces.

TIFF includes anumber of compression schemesthat allow developersto
choose the best space or time tradeoff for their applications.

TIFFisnot tied to specific scanners, printers, or computer display hardware.

TIFFisportable. It doesnot favor particular operating systems, file systems,
compilers, or processors.

TIFF isdesigned to be extensible—to evolve gracefully as new needs arise.

TIFF alowstheinclusion of an unlimited amount of private or special-purpose
information.

TIFF 6.0 Specification

Revision Notes

Final—June 3, 1992

Thisrevision replaces TIFF Revision 5.0.

Paragraphsthat contain new or substantially-changed information are shown in
italics.

New Features in Revision 6.0

Major enhancementsto TIFF 6.0 are described in Part 2. They include:

Clarifications

CMYK image definition

A revised RGB Colorimetry section.
Y CbCr image definition

CIE L*a*b* image definition

Tiled image definition

JPEG compression

The LZW compression section more clearly explainswhen to switch the cod-
ing bit length.

Theinteraction between Compression=2 (CCITT Huffman) and
Photometricl nterpretation was clarified.

The data organization of uncompressed data (Compression=1) when
BitsPerSampleisgreater than 8 was clarified. See the Compression field de-
scription.

Thediscussion of CCITT Group 3 and Group 4 bilevel image encodingswas
clarified and expanded, and Group3Options and Group4Optionsfieldswere
renamed T4Options and T60ptions. See Section 11.

Organizational Changes

To make the organi zation more consi stent and expandabl e, appendiceswere
transformed into numbered sections.

The document was divided into two parts—Baseline and Extensions—to help
devel opers make better and more consistent implementation choices. Part 1,
the Baseline section, describes those featuresthat all general-purpose TIFF
readers should support. Part 2, the Extensions section, describes anumber of
featuresthat can be used by specia or advanced applications.

Anindex and table of contents were added.

TIFF 6.0 Specification

Final—June 3, 1992

Changes in Requirements

* Toillustrate aBasaline TIFF file earlier in the document, the material from
Appendix G (“TIFF Classes’) in Revision 5 wasintegrated into the main body
of the specification . Aspart of thisintegration, the TI1FF Classesterminology
was replaced by the more monolithic Baseline TIFF terminology. Theintent
wasto further encourage all mainstream TI1FF readersto support the Baseline
TIFF requirementsfor bilevel, grayscale, RGB, and pal ette-color images.

» Duetolicensing issues, LZW compression support was moved out of the“ Part
1: Basdline TIFF” and into “ Part 2: Extensions.”

» Basaline TIFF requirementsfor bit depthsin pal ette-col or images were weak-
ened abit.

Changes in Terminology

Compatibility

In previous versions of the specification, theterm “tag” reffered both to the identi-
fying number of aTIFF field and to the entirefield. In thisversion, theterm “tag”
refersonly to theidentifying number. Theterm “field” refersto the entirefield,
including thevaue.

Every attempt has been made to add functionality in such away asto minimize
compatibility problemswith files and software that were based on earlier versions
of the TIFF specification. The goal isthat TIFF files should never become obso-
lete and that T1FF software should not have to be revised more frequently than
absolutely necessary. In particular, Baseline TIFF 6.0 fileswill generally be read-
able even by older applicationsthat assume TIFF 5.0 or an earlier version of the
specification.

However, TIFF 6.0 filesthat use one of the major new extensions, such asanew
compression scheme or color space, will not be successfully read by older soft-
ware. In such cases, the older applications must gracefully give up and refuseto
import theimage, providing the user with areasonably informative message.

TIFF 6.0 Specification Final—June 3, 1992

TIFF Administration

Information and Support

The most recent version of the TIFF specification in PostScript format isavailable
on CompuServe ("Go ALDSVC", Library 10) and on AppleLink (Aldus Devel-
opersicon). Sample TIFF filesand other TIFF developer information can also be
found at theselocations.

The Aldus CompuServe forum (Go ALDSV C) can also be used to post messages
to other TIFF devel opers, enabling devel opersto help each other.

Because of the tremendous growth in the usage of TIFF, Aldusisno longer ableto
provide ageneral consulting servicefor TIFF implementors. TIFF developersare

encouraged to study sample TIFFfiles, read TIFF documentation thoroughly, and
work with devel opers of other productsthat are important to you.

Most companiesthat use TI1FF can answer questions about support for TIFFin
their products. Contact the appropriate product manager or developer support
service group.

If you are an experienced TIFF developer and are interested in contract program-
ming for other devel opers, please contact Aldus. Aldus can give your nameto
othersthat might need your services.

Private Fields and Values

An organization might wish to storeinformation meaningful to only that organi-
zationinaTIFFfile. Tags numbered 32768 or higher, sometimes called private
tags, arereserved for that purpose.

Upon request, the TIFF administrator (the Aldus Developers Desk) will alocate
and register ablock of private tagsfor an organization, to avoid possible conflicts
with other organizations. Tagsare normally alocated in blocks of five or less.

Y ou do not need to tell the TIFF administrator or anyone el se what you plan to use
themfor.

Private enumerated val ues can be accommodated in asimilar fashion. For ex-
ample, you may wish to experiment with anew compression schemewithin TIFF.
Enumeration constants numbered 32768 or higher are reserved for private usage.
Upon request, the administrator will allocate and register one or more enumerated
valuesfor aparticular field (Compression, in our example), to avoid possible
conflicts.

Tagsand values allocated in the private number range are not prohibited from
being included in afuture revision of this specification. Several such instances
exist inthe TIFF specification.

Do not choose your own tag numbers. Doing so could cause serious compatibility
problemsin the future.

TIFF 6.0 Specification

Final—June 3, 1992

If you need morethan 5 or 10 tags, Aldus suggeststhat you reserve asingle pri-
vatetag, defineit asaL ONG, and useits value asapointer (offset) to aprivate
IFD or other data structure of your choosing. Within that IFD, you can use what-
ever tagsyou want, since no one elsewill know that itisan IFD unlessyou tell
them. This givesyou some 65,000 private tags.

Submitting a Proposal

Any person or group that wantsto propose a change or addition to the T1FF speci-
fication should prepare aproposal that includesthe following information:

» Name of the person or group making the request, and your affiliation.

» Thereasonfor therequest.

» Alist of changesexactly asyou propose that they appear in the specification.
Useinserts, callouts, or other obvious editorial techniquesto indicate areas of
change, and number each change.

» Discussion of the potential impact on theinstalled base.

» Alist of contacts outside your company that support your position. Include
their affiliation.

Please send your proposal to Internet address: tiff-input@al dus.com. (From
AppleLink, you can send to: tiff-input@al dus.com@internet#. From
CompuServe, you can send to: >INTERNET :tiff-input@al dus.com.) Do not send
TIFF implementation questionsto this address; see above for Aldus Developers
Desk TIFF support policies.

The TIFF Advisory Committee

The TIFF Advisory Committeeisaworking group of TIFF expertsfrom anumber
of hardware and software manufacturers. It wasformed in the spring of 1991 to
provide aforum for debating and refining proposalsfor the 6.0 release of the TIFF
specification. Itisnot clear if thiswill be an ongoing group or if it will gointo a
period of hibernation until pressure buildsfor another major release of the TIFF
specification.

If you area TIFF expert and think you have thetime and interest to work on this
committee, contact the Aldus Devel opers Desk for further information. For the
TIFF 6.0 release, the group met every two or three months, usually on the west
coast of the U.S. Accessibility vialnternet e-mail (or AppleLink or CompuServe,
which have gatewaysto the Internet) isarequirement for membership, since that
has proven to be an invaluable meansfor getting work done between mestings.

Other TIFF Extensions

The Aldus TIFF sections on CompuServe and AppleLink will contain proposed
extensionsfrom Aldus and other companiesthat are not yet approved by the TIFF
Advisory Committee.

Many of these proposalswill never be approved or even considered by the TIFF
Advisory Committee, especialy if they represent specialized uses of TIFF that do

TIFF 6.0 Specification

Final—June 3, 1992

not fall within the domain of publishing or general graphicsor pictureinter-
change. Usethem at your ownrisk; it isunlikely that these featureswill be widely
supported. And if you do write filesthat incorporate these extensions, be sureto
not call them TIFF files or to mark them in someway so that they will not be
confused with mainstream TIFF files.

Alduswill provide aplace on Compuserve and Applelink for storing such docu-
ments. Contact the Aldus Devel opers Desk for instructions. We recommend that
all submissionsbein theform of simpletext or portable PostScript form that can
be downloaded to any PostScript printer in any computing environment.

If anon-Aldus contact nameislisted, please usethat contact rather than Aldusfor
submitting requests for future enhancementsto that extension.

10

TIFF 6.0 Specification Final—June 3, 1992

Part 1: Baseline TIFF

The TIFF specification is divided into two parts. Part 1 describes Baseline TIFF.
Basdline TIFF isthe core of TIFF, the essentialsthat all mainstream TIFF devel-
opers should support in their products.

11

TIFF 6.0 Specification Final—June 3, 1992

Section 1: Notation

Decimal and Hexadecimal

Unless otherwise noted, al numeric valuesin this document are expressed in
decimal. (“.H” isappended to hexidecima values.)

Compliance

Isand shall indicate mandatory requirements. All compliant writers and readers
must meet the specification.

Should indicates arecommendation.
May indicates an option.

Features designated ‘ not recommended for general data interchange’ are consid-
ered extensionsto Baseline TIFF. Filesthat use such features shall be designated
“ Extended TIFF 6.0” files, and the particular extensions used should be docu-
mented. A Baseline TIFF 6.0 reader isnot required to support any extensions.

12

TIFF 6.0 Specification

Final—June 3, 1992

Section 2: TIFF Structure

Image File Header

BytesO-1:

Bytes2-3

Bytes4-7

TIFFisanimagefileformat. In thisdocument, afileis defined to be a sequence of
8-bit bytes, where the bytes are numbered from 0 to N. Thelargest possible TIFF
fileis2**32 bytesin length.

A TIFFfile begins with an 8-byteimagefile header that pointsto an imagefile
directory (IFD). Animagefile directory containsinformation about theimage, as
well aspointersto the actual image data.

Thefollowing paragraphs describe theimagefile header and IFD in more detail.
SeeFigurel.

A TIFF file begins with an 8-byte image file header, containing the following
information:

The byte order used within thefile. Legal valuesare:
“11" (4949.H)
“MM” (4D4D.H)

Inthe“1l” format, byte order isalwaysfrom the least significant byte to the most
significant byte, for both 16-bit and 32-bit integers Thisis called little-endian byte
order. Inthe“*MM” format, byte order isalwaysfrom most significant to least
significant, for both 16-bit and 32-bit integers. Thisiscalled big-endian byte
order.

Anarbitrary but carefully chosen number (42) that further identifiesthefileasa
TIFFfile.

The byte order depends on the value of Bytes0-1.

The offset (in bytes) of thefirst IFD. The directory may be at any locationinthe
file after the header but must begin on aword boundary. In particular, an Image
File Directory may follow theimage datait describes. Readers must follow the
pointerswherever they may lead.

Theterm byte offset is always used in this document to refer to alocation with
respect to the beginning of the TIFF file. Thefirst byte of the file has an offset of
0.

13

TIFF 6.0 Specification

Final—June 3, 1992

Figure 1
Header Directory Entry
0 Byte Order X Tag
2 42 X+2 Type
4 Offset of Oth IFD X+4 Count
A
6
i X+8 Value or Offset
IFD
|
A B Number of Directory Entries V
A+2 Directory Entry 0 Value
A+14 Directory Entry 1
A+26 Directory Entry 2

A+2+B*12 Offset of next IFD

Image File Directory

AnImageFileDirectory (IFD) consists of a 2-byte count of the number of direc-
tory entries (i.e., the number of fields), followed by a sequence of 12-bytefield
entries, followed by a4-byte offset of the next IFD (or Oif none). (Do not forget to
writethe 4 bytes of O after thelast IFD.)

Theremust beat least 1 IFD inaTIFF fileand each IFD must have at |east one
entry.

SeeFigurel.

IFD Entry

Each 12-byte IFD entry hasthefollowing format:

Bytes0-1 TheTagthat identifiesthefield.

Bytes2-3 Thefield Type.

Bytes4-7 Thenumber of values, Count of theindicated Type.

14

TIFF 6.0 Specification

Final—June 3, 1992

Bytes8-11 TheVaue Offset, thefile offset (in bytes) of the Vauefor thefield.
The Vaueisexpected to begin on aword boundary; the correspond-
ing Value Offset will thus be an even number. Thisfile offset may
point anywherein thefile, even after theimage data.

IFD Terminology

A TIFFfieldisalogical entity consisting of TIFF tag anditsvalue. Thislogical
concept isimplemented asan IFD Entry, plusthe actual valueif it doesn't fitinto
thevaue/offset part, thelast 4 bytes of the IFD Entry. Theterms TIFF field and
IFD entry areinterchangeablein most contexts.

Sort Order

Theentriesin an IFD must be sorted in ascending order by Tag. Note that thisis
not the order in which the fields are described in this document. The Vauesto
which directory entries point need not bein any particular order inthefile.

Value/Offset

To savetime and space the Vaue Offset containsthe Valueinstead of pointing to
the Valueif and only if the Valuefitsinto 4 bytes. If the Vaueis shorter than 4
bytes, it isleft-justified within the 4-byte Value Offset, i.e., stored in the lower-
numbered bytes. Whether the VVauefitswithin 4 bytesis determined by the Type
and Count of thefield.

Count

Count—called Length in previous versions of the specification—isthe number of
values. Notethat Count is not thetotal number of bytes. For example, asingle 16-
bit word (SHORT) hasa Count of 1; not 2.

Types

Thefield typesand their sizesare:

1=BYTE 8-bit unsigned integer.

2=ASCII 8-bit bytethat containsa 7-bit ASCII code; the last byte
must be NUL (binary zero).

3=SHORT 16-bit (2-byte) unsigned integer.

4=LONG 32-bit (4-byte) unsigned integer.

5=RATIONAL Two LONGs: thefirst representsthe numerator of a

fraction; the second, the denominator.

Thevalue of the Count part of an ASCII field entry includesthe NUL . If padding
is necessary, the Count does not include the pad byte. Notethat thereisnoiinitial
“count byte” asin Pascal-style strings.

15

TIFF 6.0 Specification

Final—June 3, 1992

Any ASCII field can contain multiple strings, each terminated with a NUL. A
singlestring is preferred whenever possible. The Count for multi-string fieldsis
the number of bytesin all the stringsin that field plustheir terminating NUL
bytes. Only one NUL isallowed between strings, so that the stringsfollowing the
first string will often begin on an odd byte.

The reader must check thetypeto verify that it contains an expected value. TIFF
currently allowsmore than 1 valid type for somefields. For example, ImageWidth
and Imagel_ength are usually specified as having type SHORT. But imageswith
morethan 64K rows or columns must usethe LONG field type.

TIFF readers should accept BYTE, SHORT, or LONG valuesfor any unsigned
integer field. Thisallowsa single procedureto retrieve any integer value, makes
reading morerobust, and saves disk space in some situations.

In TIFF 6.0, some new field types have been defined:
6=SBYTE An 8-bit signed (twos-complement) integer.

7=UNDEFINED An 8-bit byte that may contain anything, depending on
the definition of thefield.

8=SSHORT A 16-bit (2-byte) signed (twos-complement) integer.
9=S ONG A 32-bit (4-byte) signed (twos-complement) integer.

10=SRATIONAL Two SLONG's: thefirst representsthe numerator of a
fraction, the second the denominator.

11=FLOAT Single precision (4-byte) | EEE format.
12=DOUBLE Double precision (8-byte) |IEEE format.

These new field types are also governed by the byte order (11 or MM) inthe TIFF
header.

Warning: Itispossiblethat other TIFF field typeswill be added in thefuture.
Readers should skip over fields containing an unexpected field type.

Fields are arrays

Each TIFF field hasan associated Count. Thismeansthat all fieldsare actually
one-dimensional arrays, even though most fields contain only a single value.

For example, to store a complicated data structurein a single privatefield, use
the UNDEFINED field type and set the Count to the number of bytesrequired to
hold the data structure.

Multiple Images per TIFF File

There may be morethan onelFD inaTIFF file. Each IFD definesasubfile. One
potential use of subfilesisto describe related images, such asthe pages of afac-
similetransmission. A Baseline TIFF reader isnot required to read any IFDs
beyond thefirst one.

16

TIFF 6.0 Specification

Final—June 3, 1992

Section 3: Bilevel Images

Color

Compression

Now that the overall TIFF structure has been described, we can move ontofilling
the structure with actual fields (tags and values) that describe raster image data.

Tomakeal of thisclearer, the discussion will be organized according to the four
Baseline TIFF imagetypes: bilevel, grayscale, palette-color, and full-color im-
ages. This section describes bilevel images.

Fieldsrequired to describe bilevel images are introduced and described briefly
here. Full descriptions of each field can befound in Section 8.

A bilevel image containstwo colors—black and white. TIFF allows an applica-
tion to write out bilevel datain either awhite-is-zero or black-is-zero format. The
field that recordsthisinformation is called Photometriclnterpretation.

Photometricinterpretation
Tag =262 (106.H)

Type =SHORT

Values:

WhitelsZero. For bilevel and grayscaleimages: 0isimaged aswhite. The maxi-
mum valueisimaged as black. Thisisthe normal valuefor Compression=2.

BlacklsZero. For bilevel and grayscaleimages: 0isimaged as black. The maxi-
mum valueisimaged aswhite. If thisvalueis specified for Compression=2, the
image should display and print reversed.

Data can be stored either compressed or uncompressed.

Compression
Tag =259 (103.H)
Type =SHORT
Values.

No compression, but pack datainto bytesastightly as possible, leaving no unused
bits (except at the end of arow). The component values are stored asan array of
type BY TE. Each scan line (row) is padded to the next BY TE boundary.

CCITT Group 3 1-Dimensional Modified Huffman run length encoding. See

17

TIFF 6.0 Specification

Rows and Columns

32773 =

Final—June 3, 1992

Section 10 for adescription of Modified Huffman Compression.

PackBits compression, asimple byte-oriented run length scheme. Seethe
PackBits section for details.

Datacompression appliesonly to raster image data. All other TIFFfieldsare
unaffected.

Baseline TIFF readers must handle all three compression schemes.

Animageisorganized asarectangular array of pixels. The dimensions of this
array are stored inthefollowing fields:

ImagelLength
Tag =257 (101.H)
Type =SHORT or LONG

The number of rows (sometimes described as scanlines) in theimage.

ImageWidth
Tag =256 (100.H)
Type =SHORT or LONG

The number of columnsintheimage, i.e., the number of pixels per scanline.

Physical Dimensions

Applications often want to know the size of the picture represented by animage.
Thisinformation can be cal culated from ImageWidth and Imagelength given the
following resolution data:

ResolutionUnit
Tag =296(128.H)
Type =SHORT
Values:

No absolute unit of measurement. Used for images that may have anon-square
aspect ratio but no meaningful absolute dimensions.

Inch.
Centimeter.
Default = 2 (inch).

18

TIFF 6.0 Specification

Final—June 3, 1992

XResolution
Tag =282 (11A.H)
Type =RATIONAL

The number of pixels per ResolutionUnit in the ImageWidth (typically, horizontal
- see Orientation) direction.

YResolution
Tag =283 (11B.H)
Type =RATIONAL

The number of pixels per ResolutionUnit in the Imagelength (typically, vertical)
direction.

Location of the Data

Compressed or uncompressed image data can be stored almost anywherein a
TIFFfile. TIFF also supports breaking an image into separate strips for increased
editing flexibility and efficient 1/O buffering. The location and size of each strip is
given by thefollowing fields:

RowsPerStrip

Tag =278 (116.H)

Type =SHORT or LONG

The number of rowsin each strip (except possibly thelast strip.)

For example, if Imagel ength is 24, and RowsPerStrip is 10, then there are 3
strips, with 10 rowsin thefirst strip, 10 rowsin the second strip, and 4 rowsin the
third strip. (Thedatain thelast strip is not padded with 6 extrarows of dummy
data.)

StripOffsets

Tag =273 (111.H)

Type =SHORT or LONG

For each strip, the byte offset of that strip.

StripByteCounts
Tag =279 (117.H)
Type =SHORT or LONG

For each strip, the number of bytesin that strip after any compression.

19

TIFF 6.0 Specification

Final—June 3, 1992

Putting it al together (along with acouple of less-important fieldsthat are dis-
cussed later), asample bilevel image file might contain the following fields:

A Sample Bilevel TIFF File

Offset Description Value

(hex) (numeric values ar e expr essed in hexadecimal notation)
Header:

0000 ByteOrder 4D4D

0002 42 002A

0004 1stIFD offset 00000014

IFD:

0014 Number of Directory Entries 000C

0016 NewSubfileType O00FE 0004 00000001 00000000
0022 ImageWidth 0100 0004 00000001 000007D0
002E ImageLength 0101 0004 00000001 00000BB8
003A Compression 0103 0003 00000001 8005 0000
0046 Photometriclnterpretation 0106 0003 00000001 0001 0000
0052 StripOffsets 0111 0004 000000BC 00000086
005E RowsPerStrip 0116 0004 00000001 00000010
006A StripByteCounts 0117 0003 000000BC 000003A6
0076 XResolution 011A 0005 00000001 00000696
0082 YResolution 011B 0005 00000001 0000069E
008E Software 0131 0002 0000000E 000006A6
009A DateTime 0132 0002 00000014 000006B6
00A6 NextIFD offset 00000000

Valueslonger than 4 bytes:

00B6 StripOffsets Offset0, Offsetl, ... Offset187

03A6 StripByteCounts Count0, Count1, ... Count187

0696 XResolution 0000012C 00000001

069E YResolution 0000012C 00000001

06A6 Software “PageMaker 4.0

06B6 DateTime “1988:02:18 13:59:59"

Image Data:

00000700 Compressed datafor strip 10

XXXXXXXX Compressed datafor strip 179

XXXXXXXX Compressed datafor strip 53

XXXXXXXX Compressed datafor strip 160

End of example

20

TIFF 6.0 Specification Final—June 3, 1992

Comments on the Bilevel Image Example

» ThelFD inthisexample startsat 14h. It could have started anywherein thefile
providing the offset was an even number greater than or equal to 8 (sincethe
TIFF header isalwaysthefirst 8 bytesof aTIFFfile).

» With 16 rows per strip, thereare 188 stripsin all.

» Theexample usesanumber of optional fields such as DateTime. TIFF readers
must safely skip over thesefieldsif they do not understand or do not wish to
usetheinformation. Baseline TIFF readers must not require that such fieldsbe
present.

» Tomakeapoint, thisexample has highly-fragmented image data. The strips of
theimage are not in sequential order. The point of thisexampleistoillustrate
that strip offsets must not beignored. Never assumethat strip N+1 follows strip
N ondisk. Itisnot required that theimage datafollow the IFD information.

Required Fields for Bilevel Images

Hereisalist of required fieldsfor Baseline TIFF bilevel images. Thefieldsare
listed in numerical order, asthey would appear in the IFD. Note that the previous
example omits some of thesefields. Thisis permitted because the fiel dsthat were
omitted each have adefault and the default is appropriate for thisfile.

TagName Decima Hex Type Vaue
ImageWidth 256 100 SHORT or LONG

ImageL ength 257 101 SHORT or LONG
Compression 259 103 SHORT 1,20r 32773
Photometriclnterpretation 262 106 SHORT Oorl
StripOffsets 273 111 SHORT or LONG
RowsPerStrip 278 116 SHORT or LONG
StripByteCounts 279 117 LONG or SHORT
XResolution 282 11A RATIONAL

Y Resolution 283 11B RATIONAL

ResolutionUnit 296 128 SHORT 1,20r3

Baseline TIFF bilevel imageswere called TIFF Class B imagesin earlier versions
of the TIFF specification.

21

TIFF 6.0 Specification Final—June 3, 1992

Section 4: Grayscale Images

Grayscaleimages are ageneralization of bilevel images. Bilevel images can store
only black and white image data, but grayscal e images can also store shades of

gray.

To describe such images, you must add or change the following fields. The other
required fields are the same asthose required for bilevel images.

Differences from Bilevel Images

Compression = 1 or 32773 (PackBits). In Baseline TIFF, grayscaleimages can
either be stored as uncompressed data or compressed with the PackBits a gorithm.

Caution: PackBitsis often ineffective on continuous tone images, including many
grayscaleimages. In such cases, it isbetter to leave theimage uncompressed.

BitsPerSample

Tag =258 (102.H)

Type =SHORT

The number of bits per component.

Allowablevauesfor Baseline TIFF grayscaleimages are 4 and 8, allowing either
16 or 256 distinct shades of gray.

Required Fields for Grayscale Images

These aretherequired fieldsfor grayscaleimages (in numerical order):

TagName Decima Hex Type Vaue
ImageWidth 256 100 SHORT or LONG

ImageL ength 257 101 SHORT or LONG
BitsPerSample 258 102 SHORT 4o0r8
Compression 259 103 SHORT lor 32773
Photometriclnterpretation 262 106 SHORT Oorl
StripOffsets 273 111 SHORT or LONG

RowsPerStrip 278 116 SHORT or LONG
StripByteCounts 279 117 LONG or SHORT

XResolution 282 11A RATIONAL

Y Resolution 283 11B RATIONAL

ResolutionUnit 296 128 SHORT lor2or3

Baseline TIFF grayscaleimageswere called TIFF Class G imagesin earlier ver-
sionsof the TIFF specification.

22

TIFF 6.0 Specification Final—June 3, 1992

Section 5: Palette-color Images

Palette-color images are similar to grayscaleimages. They till have one compo-
nent per pixel, but the component valueis used asan index into afull RGB-lookup
table. To describe such images, you need to add or change the following fields.
The other required fields are the same as those for grayscaleimages.

Differences from Grayscale Images

Photometriclnter pretation = 3 (Palette Color).

ColorMap

Tag =320(140.H)

Type =SHORT

N =3* (2**BitsPerSample)

Thisfield defines a Red-Green-Blue color map (often called alookup table) for
palette color images. |n a pal ette-color image, apixel valueisused toindex into an
RGB-lookup table. For example, a pal ette-color pixel having avalue of 0 would
be displayed according to the Oth Red, Green, Bluetriplet.

InaTIFF ColorMap, al the Red values comefirgt, followed by the Green values,
then the Blue values. In the ColorMap, black isrepresented by 0,0,0 and whiteis
represented by 65535, 65535, 65535.

Required Fields for Palette Color Images

These aretherequired fieldsfor pal ette-color images (in numerical order):

TagName Decima Hex Type Vaue
ImageWidth 256 100 SHORT or LONG

ImageL ength 257 101 SHORT or LONG
BitsPerSample 258 102 SHORT 4o0r8
Compression 259 103 SHORT lor 32773
Photometriclnterpretation 262 106 SHORT 3
StripOffsets 273 111 SHORT or LONG

RowsPerStrip 278 116 SHORT or LONG
StripByteCounts 279 117 LONG or SHORT

XResolution 282 11A RATIONAL

Y Resolution 283 11B RATIONAL

ResolutionUnit 296 128 SHORT lor2or3
ColorMap 320 140 SHORT

Baseline TIFF palette-color imageswere called TIFF Class Pimagesin earlier
versions of the TIFF specification.

23

TIFF 6.0 Specification

Final—June 3, 1992

Section 6: RGB Full Color Images

In an RGB image, each pixel ismade up of three components: red, green, and
blue. Thereisno ColorMap.

To describe an RGB image, you need to add or change thefollowing fieldsand
values. The other required fields are the same as those required for pal ette-color
images.

Differences from Palette Color Images

BitsPer Sample = 8,8,8. Each component is 8 bitsdeep in aBaseline TIFF RGB
image.

Photometricl nter pretation = 2 (RGB).
Thereisno ColorMap.

SamplesPerPixel
Tag =277 (115.H)
Type =SHORT

The number of components per pixel. Thisnumber is 3 for RGB images, unless
extrasamples are present. See the ExtraSamplesfield for further information.

Required Fields for RGB Images

These aretherequired fieldsfor RGB images (in numerical order):

TagName Decima Hex Type Vaue
ImageWidth 256 100 SHORT or LONG

ImageL ength 257 101 SHORT or LONG
BitsPerSample 258 102 SHORT 88,8
Compression 259 103 SHORT lor 32773
Photometriclnterpretation 262 106 SHORT 2
StripOffsets 273 111 SHORT or LONG
SamplesPerPixel 277 115 SHORT 3or more
RowsPerStrip 278 116 SHORT or LONG
StripByteCounts 279 117 LONG or SHORT

XResolution 282 11A RATIONAL

Y Resolution 283 11B RATIONAL

ResolutionUnit 296 128 SHORT 1,20r3

24

TIFF 6.0 Specification Final—June 3, 1992

The BitsPerSample values|listed above apply only to the main image data. If
ExtraSamples are present, the appropriate BitsPerSample valuesfor those
samples must a so beincluded.

Baseline TIFF RGB imageswere called TIFF ClassR imagesin earlier versions
of the TIFF specification.

25

TIFF 6.0 Specification Final—June 3, 1992

Section 7: Additional Baseline TIFF
Requirements

This section describes characteristics required of all Baseline TIFFfiles.

General Requirements

Options. Where there are options, TIFF writers can use whichever they want.
Baseline TIFF readers must be able to handle all of them.

Defaults. TIFF writers may, but are not required to, write out afield that hasa
default value, if the default valueisthe one desired. TIFF readers must be pre-
pared to handle either situation.

Other fidlds. TIFF readers must be prepared to encounter fields other than those
requiredin TIFFfiles. TIFF writersare allowed to write optional fields such as
Make, Model, and DateTime, and TIFF readers may use such fieldsif they exist.
TIFF readers must not, however, refuseto read thefileif such optional fieldsdo
not exist. TIFF readers must al so be prepared to encounter and ignore private
fields not described in the TIFF specification.

‘MM’ and ‘Il’ byteorder. TIFF readers must be able to handle both byte orders.
TIFF writers can do whichever ismost convenient or efficient.

Multiple subfiles. TIFF readers must be prepared for multipleimages (subfiles)

per TIFFfile, although they are not required to do anything with images after the
first one. TIFF writersare required to write along word of O after thelast IFD (to
signal that thisisthelast IFD), as described earlier in this specification.

If multiple subfiles are written, thefirst one must be the full-resolution image.
Subsequent images, such as reduced-resol ution images, may bein any order inthe
TIFFfile. If areader wantsto use such images, it must scan the corresponding
IFD’ sbefore deciding how to proceed.

TIFF Editors. Editors—applicationsthat modify TIFF files—have afew addi-
tional requirements:

» TIFF editors must be especially careful about subfiles. If aTIFF editor editsa
full-resolution subfile, but does not update an accompanying reduced-resolu-
tion subfile, areader that uses the reduced-resol ution subfile for screen display
will display the wrong thing. So TIFF editors must either create anew reduced-
resol ution subfile when they alter afull-resolution subfile or they must delete
any subfilesthat they aren’t prepared to deal with.

* A similar situation ariseswith thefieldsinan IFD. It is unnecessary—and
possibly dangerous—for an editor to copy fieldsit does not understand be-
causethe editor might alter thefilein away that isincompatible with the un-
known fields.

No Duplicate Pointers. No data should be referenced from more than one place.
TIFF readersand editorsare under no obligation to detect this condition and
handleit properly. Thiswould not be a problemif TIFF fileswere read-only enti-

26

TIFF 6.0 Specification

Final—June 3, 1992

ties, but they are not. Thiswarning coversboth TIFF field value offsets and fields
that are defined as offsets, such as SripOffsets.

Point to real data. All strip offsets must reference valid locations. (It isnot legal to
use an offset of 0 to mean something special.)

Beware of extra components. Some TIFF files may have more components per
pixel than you think. A Baseline TIFF reader must skip over themgracefully,
using the values of the SamplesPer Pixel and BitsPer Samplefields. For example,
itispossiblethat the data will have a Photometriclnterpretation of RGB but have
4 SamplesPerPixd . See ExtraSamplesfor further details.

Beware of new field types. Be prepared to handle unexpected field types such as
floating-point data. A Baseline TIFF reader must skip over such fields gracefully.
Do not expect that BYTE, ASCII, SHORT, LONG, and RATIONAL will alwaysbe
acompletelist of field types.

Beware of new pixel types. Some TIFF files may have pixel data that consists of
something other than unsigned integers. If the SampleFormat field is present and
thevalueisnot 1, a Basdline TIFF reader that cannot handle the SampleFormat
value must terminate the import process gracefully.

Notes on Required Fields

ImageWidth, Imagel ength. Both“SHORT” and “LONG” TIFFfield typesare
allowed and must be handled properly by readers. TIFF writers can use either
type. TIFF readersare not required to read arbitrarily large files however. Some
readerswill give upif the entireimage cannot fit into available memory. (In such
casesthe reader should inform the user about the problem.) Otherswill probably
not be able to handle ImageWidth greater than 65535.

RowsPer Strip. SHORT or LONG. Readers must be ableto handle any value
between 1 and 2** 32-1. However, somereaders may try to read an entire strip
into memory at onetime. If the entireimage is one strip, the application may run
out of memory. Recommendation: Set RowsPerStrip such that the size of each
stripisabout 8K bytes. Do thiseven for uncompressed data becauseit iseasy for
awriter and makesthings simpler for readers. Note that extremely wide high-
resolution images may have rowslarger than 8K bytes; in this case, RowsPerStrip
should be 1, and the strip will belarger than 8K.

StripOffsets. SHORT or LONG.
StripByteCounts. SHORT or LONG.

XResolution, YResolution. RATIONAL. Notethat the X and Y resolutions may
be unequal. A TIFF reader must be ableto handlethis case. Typicaly, TIFF pixel-
editors do not care about the resol ution, but applications (such as page layout
programs) do care.

ResolutionUnit. SHORT. TIFF readers must be prepared to handle all three
valuesfor ResolutionUnit.

27

TIFF 6.0 Specification

Final—June 3, 1992

Section 8: Baseline Field Reference Guide

The Fields

This section contains detailed information about all the Baselinefields defined in
thisversion of TIFF. A Basdlinefield isany field commonly found in aBaseline
TIFFfile, whether required or not.

For convenience, fieldsthat were defined in earlier versions of the TIFF specifica-
tion but are no longer generally recommended have also been included in this
section.

New fieldsthat are associated with optional features are not listed in this section.
See Part 2 for descriptions of these new fields. Thereisacompletelist of al fields
described in this specification in Appendix A, and thereareentriesfor all TIFF
fieldsin theindex.

Morefields may be added in future versions. Whenever possible they will be
added in away that allowsold TIFF readersto read newer TIFFfiles.

The documentation for each field contains:

» thenameof thefidd

» theTag number

» thefield Type

* therequired Number of Values(N); i.e., the Count

» commentsdescribing thefield

» thedefault, if any

If thefield does not exist, readers must assume the default valuefor the field.

Most of the fields described in this part of the document are not required or are
required only for particular types of TIFF files. Seethe preceding sectionsfor lists
of required fields.

Before defining the fields, you must understand these basic concepts: A Baseline
TIFFimageis defined to be atwo-dimensional array of pixels, each of which
consists of one or more color components. Monochromatic data has one color
component per pixel, while RGB color data has three color components per pixel.

Artist

Person who created theimage.

Tag =315 (13B.H)

Type =ASClI

Note: some older TIFF files used thistag for storing Copyright information.

28

TIFF 6.0 Specification Final—June 3, 1992

BitsPerSample
Number of bits per component.
Tag =258 (102.H)

Type =SHORT

N = SamplesPerPixel

Note that thisfield allows a different number of bits per component for each
component corresponding to a pixel. For example, RGB color data could use a
different number of bits per component for each of the three color planes. Most RGB
fileswill have the same number of BitsPerSample for each component. Even in this
case, the writer must write all three values.

Default = 1. See also SamplesPerPixel.

CellLength

Thelength of the dithering or halftoning matrix used to create adithered or
halftoned bilevd file.

Tag =265 (109.H)

Type =SHORT

N =1

Thisfield should only be present if Threshholding =2
No default. See also Threshholding.

CellWidth

Thewidth of thedithering or halftoning matrix used to create adithered or
halftoned bilevel file. Tag =264 (108.H)

Type =SHORT
N =1
No default. See also Threshholding.

ColorMap

A color map for palette color images.
Tag =320(140.H)

Type =SHORT

N =3* (2**BitsPerSample)

Thisfield defines a Red-Green-Blue color map (often called alookup table) for
pal ette-color images. In a palette-color image, apixel valueisused to index into
an RGB lookup table. For example, a pa ette-color pixel having avalue of 0
would be displayed according to the Oth Red, Green, Bluetriplet.

29

TIFF 6.0 Specification

Final—June 3, 1992

InaTIFF ColorMap, al the Red values comefirgt, followed by the Green values,
then the Blue values. The number of valuesfor each color is 2** BitsPerSample.
Therefore, the ColorMap field for an 8-bit pal ette-color image would have 3* 256
values.

Thewidth of each valueis 16 bits, asimplied by the type of SHORT. O represents
the minimum intensity, and 65535 represents the maximum intensity. Black is
represented by 0,0,0, and white by 65535, 65535, 65535.

See al so Photometri ¢l nterpretation—pal ette col or.
No default. ColorMap must beincludedin all palette-color images.

Compression

Compression scheme used on theimage data.
Tag =259 (103.H)

Type =SHORT

N =1

No compression, but pack datainto bytesastightly as possibleleaving no unused
bits except at the end of arow.

1If Then the sample values are stored asan array of type:
BitsPerSample= 16 for al samples SHORT
BitsPerSample= 32 for al samples LONG

Otherwise BYTE

Each row is padded to the next BYTE/SHORT/LONG boundary, consistent with
the preceding BitsPer Samplerule.

If theimage datais stored asan array of SHORTs or LONGS, the byte ordering
must be consistent with that specified in bytes0 and 1 of the TIFF file header.
Therefore, little-endian format fileswill have theleast significant bytes preceding
the most significant bytes, while big-endian format fileswill have the opposite
order.

If the number of bits per component is not a power of 2, and you are willing to give up

some space for better performance, use the next higher power of 2. For example, if

your data can be represented in 6 bits, set BitsPerSample to 8 instead of 6, and then

convert the range of the values from [0,63] to [0,255].

Rows must begin on byte boundaries. (SHORT boundariesif thedatais stored as
HORTS, LONG boundariesif thedata isstored asLONGS).

Some graphics systems require image data rows to be word-aligned or double-word-

aigned, and padded to word-boundaries or double-word boundaries. Uncompressed

TIFF rows will need to be copied into word-aligned or double-word-aligned row

buffers before being passed to the graphics routines in these environments.

CCITT Group 3 1-Dimensional Modified Huffman run-length encoding. See
Section 10. BitsPerSample must be 1, since thistype of compressionisdefined
only for bilevel images.

30

TIFF 6.0 Specification

32773 =

Final—June 3, 1992

PackBits compression, asimple byte-oriented run-length scheme. See Section 9
for details.

Datacompression appliesonly to theimage data, pointed to by StripOffsets.
Default = 1.

Copyright
Copyright notice.

Tag =33432 (8298.H)
Type =ASClI

Copyright notice of the person or organization that claimsthe copyright to the
image. The complete copyright statement should belisted in thisfield including
any dates and statements of claims. For example, “ Copyright, John Smith, 19xx.
All rightsreserved.”

DateTime

Date and time of image creation.
Tag =306 (132.H)

Type =ASClI

N =20

Theformatis: “YYYY:MM:DD HH:MM:SS’, with hourslike those on a 24-hour
clock, and one space character between the date and the time. The length of the
string, including the terminating NUL, is 20 bytes.

ExtraSamples
Description of extracomponents.
Tag =338(152H)

Type =SHORT

N =m

Specifiesthat each pixel has mextracomponentswhose interpretation isdefined
by one of thevalueslisted below. When thisfield isused, the SamplesPerPixel
field hasavalue greater than the Photometricl nterpretation field suggests.

For example, full-color RGB data normally has SamplesPerPixel=3. If
SamplesPerPixel isgreater than 3, then the ExtraSamplesfield describesthe
meaning of the extrasamples. If SamplesPerPixe is, say, 5 then ExtraSamples
will contain 2 values, onefor each extrasample.

ExtraSamplesistypically used to include non-color information, such as opacity,
inanimage. The possible valuesfor eachiteminthefied'svaueare:

Unspecified data
Associated alphadata (with pre-multiplied color)

31

TIFF 6.0 Specification Final—June 3, 1992

2= Unassociated alphadata

Associated alphadatais opacity information; it isfully described in Section 21.
Unassociated alphadataistransparency information that logically existsindepen-
dent of animage; it iscommonly called a soft matte. Note that including both
unassociated and associated alphais undefined because associated al pha specifies
that color components are pre-multiplied by the a pha component, while
unassociated al pha specifiesthe opposite.

By convention, extracomponentsthat are present must be stored asthe“last com-
ponents’ in each pixel. For example, if SamplesPerPixel is4 and thereis1 extra
component, then it islocated in the last component location (SamplesPerPixel-1)
ineach pixel.

Componentsdesignated as*“extra’ arejust like other componentsinapixel. In
particular, the size of such componentsis defined by the value of the
BitsPerSamplefield.

With theintroduction of thisfield, TI1FF readers must not assume a particular
SamplesPerPixel value based on the val ue of the Photometriclnterpretation field.
For example, if thefileisan RGB file, SamplesPerPixel may be greater than 3.

The default isno extrasamples. Thisfield must be present if there are extra
samples.

See also SamplesPerPixel, AssociatedAlpha.

FillOrder

Thelogical order of bitswithin abyte.
Tag =266 (10A.H)

Type =SHORT

N =1

1= pixelsarearranged within abyte such that pixelswith lower column valuesare
stored in the higher-order bits of the byte.

1-bit uncompressed dataexample: Pixel 0 of arow isstored in the high-order bit
of byte 0, pixel 1isstored inthe next-highest bit, ..., pixel 7 isstored in the low-
order bit of byte 0O, pixel 8 isstored in the high-order bit of byte 1, and so on.

CCITT 1-bit compressed data example: The high-order bit of thefirst compres-
sion codeisstored in the high-order bit of byte 0, the next-highest bit of thefirst
compression codeis stored in the next-highest bit of byte 0, and so on.

2= pixesarearranged within abyte such that pixelswith lower column valuesare
stored in the lower-order bits of the byte.

Werecommend that FillOrder=2 be used only in specia-purpose applications. It
iseasy and inexpensivefor writersto reverse bit order by using a 256-byte lookup
table. FillOrder = 2 should be used only when BitsPer Sample = 1 and thedatais
either uncompressed or compressed using CCITT 1D or 2D compression, to
avoid potentially ambigous situations.

Support for FillOrder=2 isnot required in aBaseline TIFF compliant reader
DefaultisFillOrder = 1.

32

TIFF 6.0 Specification

Final—June 3, 1992

FreeByteCounts

For each string of contiguous unused bytesin a TIFF file, the number of bytesin
thestring.

Tag =289 (121.H)

Type =LONG

Not recommended for general interchange.
See a0 FreeOffsets.

FreeOffsets

For each string of contiguous unused bytesin aTIFFfile, the byte offset of the
string.

Tag =288 (120.H)
Type =LONG
Not recommended for general interchange.

See a so FreeByteCounts.

GrayResponseCurve

For grayscale data, the optical density of each possible pixel value.
Tag =291(123H)

Type =SHORT

N = 2**BitsPerSample

The Oth value of GrayResponseCurve correspondsto the optical density of apixel
having avaueof 0, and so on.

Thisfield may provide useful information for sophisticated applications, but it is
currently ignored by most TIFF readers.

See also GrayResponseUnit, Photometriclnterpretation.

GrayResponseUnit

The precision of theinformation contained in the GrayResponseCurve.
Tag =290(122.H)

Type =SHORT

N =1

Because optical density is specified interms of fractional numbers, thisfield is
necessary to interpret the stored integer information. For example, if

GraySca eResponseUnitsis set to 4 (ten-thousandths of aunit), and a

Gray Sca eResponseCurve number for gray level 4is3455, then the resulting
actual valueis0.3455.

Optical densitometerstypically measure densitieswithin the range of 0.0to 2.0.

33

TIFF 6.0 Specification

Final—June 3, 1992

Number representstenths of a unit.

Number represents hundredths of aunit.

Number represents thousandths of aunit.

Number represents ten-thousandths of aunit.
Number represents hundred-thousandths of a unit.
Modifies GrayResponseCurve.

See a so GrayResponseCurve.

For historical reasons, the default is 2. However, for greater accuracy, 3 isrecom-
mended.

HostComputer

The computer and/or operating system in use at the time of image creation.
Tag =316 (13C.H)

Type =ASClI

Seedso Make, Model, Software.

ImageDescription

A string that describes the subject of theimage.
Tag =270(10E.H)

Type =ASClI

For example, auser may wish to attach acomment such as* 1988 company pic-
nic” to animage.

ImagelLength

The number of rows of pixelsintheimage.
Tag =257 (10LH)

Type =SHORT or LONG

N =1

No default. See also ImageWidth.

ImageWidth

The number of columnsintheimage, i.e., the number of pixelsper row.
Tag =256 (100.H)

Type =SHORT or LONG

N =1

No default. See also Imagelength.

34

TIFF 6.0 Specification

Final—June 3, 1992

Make

The scanner manufacturer.
Tag =271 (10F.H)
Type =ASClI

Manufacturer of the scanner, video digitizer, or other type of equipment used to
generate theimage. Synthetic images should not include thisfield.

Seedso Model, Software.

MaxSampleValue

The maximum component val ue used.
Tag =281 (119.H)

Type =SHORT

N = SamplesPerPixel

Thisfield isnot to be used to affect the visual appearance of animagewhenitis
displayed or printed. Nor should thisfield affect the interpretation of any other
field; itisused only for statistical purposes.

Default is 2** (BitsPerSample) - 1.

MinSampleValue

The minimum component val ue used.
Tag =280 (118.H)

Type =SHORT

N = SamplesPerPixel

See also MaxSampleVaue.
DefaultisO.

Model

The scanner model name or number.
Tag =272 (110.H)

Type =ASClI

The model name or number of the scanner, video digitizer, or other type of equip-
ment used to generate theimage.

See dso Make, Software.

35

TIFF 6.0 Specification

BitO

Bit1

Bit 2

Final—June 3, 1992

NewSubfileType

A generd indication of the kind of data contained in this subfile.

Tag =254 (FE.H)

Type=LONG

N=1

Replacesthe old SubfileTypefield, dueto limitationsin the definition of that field.

NewSubfileTypeis mainly useful when there are multiple subfilesin asingle
TIFFfile.

Thisfield ismade up of aset of 32 flag bits. Unused bits are expected to be 0. Bit 0
isthelow-order hit.

Currently defined values are:

is1if theimageisareduced-resolution version of another imagein this TIFFfile
elsethehitisO.

is1if theimageisasingle page of amulti-pageimage (see the PageNumber field
description); elsethe bit isO.

is1if theimage definesatransparency mask for another imageinthis TIFFfile.
The Photometriclnterpretation value must be 4, designating atransparency mask.

These values are defined as bit flags because they are independent of each other.

DefaultisO.

Orientation

The orientation of theimage with respect to the rows and columns.
Tag =274(112H)

Type =SHORT

N =1

The Oth row representsthe visual top of theimage, and the Oth column represents
thevisual left-hand side.

The Oth row representsthe visual top of theimage, and the Oth column represents
thevisual right-hand side.

The Oth row representsthe visual bottom of the image, and the Oth column repre-
sentsthe visua right-hand side.

The Oth row representsthe visual bottom of the image, and the Oth column repre-
sentsthevisual left-hand side.

The Oth row representsthe visual left-hand side of theimage, and the Oth column
represents the visual top.

The Oth row representsthe visual right-hand side of theimage, and the Oth column
represents the visual top.

The Oth row representsthe visual right-hand side of theimage, and the Oth column
represents the visual bottom.

36

TIFF 6.0 Specification Final—June 3, 1992

8= TheOthrow representsthevisual left-hand side of theimage, and the Oth column
represents the visual bottom.

Defaultis.
Support for orientations other than 1 isnot a Baseline TIFF requirement.

Photometricinterpretation
The color space of theimage data.

Tag =262 (106.H)

Type =SHORT

N =1

0= WhitelsZero. For bilevel and grayscaleimages: 0isimaged aswhite.
2**BitsPerSample-1 isimeged as black. Thisisthe normal value for Compres-
son=2.

1= BlacklsZero. For bilevel and grayscaleimages: Oisimaged asblack.
2**BitsPerSample-1isimaged aswhite. If thisvalueis specified for Compres-
sion=2, theimage should display and print reversed.

2= RGB. Inthe RGB moded, acolor isdescribed as acombination of the three pri-
mary colorsof light (red, green, and blue) in particular concentrations. For each of
the three components, 0 represents minimum intensity, and 2** BitsPerSample- 1
represents maximum intensity. Thusan RGB value of (0,0,0) represents black,
and (255,255,255) represents white, assuming 8-bit components. For
PlanarConfiguration = 1, the components are stored in theindicated order: first
Red, then Green, then Blue. For PlanarConfiguration = 2, the StripOffsetsfor the
component planesare stored in theindicated order: first the Red component plane
StripOffsets, then the Green plane StripOffsets, then the Blue plane StripOffsets.

3= Paettecolor. Inthismodel, acolor isdescribed with asingle component. The
value of the component is used asan index into the red, green and blue curvesin
the ColorMap field to retrieve an RGB triplet that definesthe color. When
Photometricl nterpretation=3 is used, ColorMap must be present and
SamplesPerPixel must be 1.

4= Transparency Mask.

Thismeansthat theimageisused to define anirregularly shaped region of another
imagein the same TIFF file. SamplesPerPixel and BitsPerSample must be 1.
PackBits compression isrecommended. The 1-bits definetheinterior of there-
gion; the O-bits define the exterior of the region.

A reader application can use the mask to determine which parts of theimageto
display. Mainimage pixelsthat correspond to 1-bitsin the transparency mask are
imaged to the screen or printer, but main image pixelsthat correspond to 0-bitsin
the mask are not displayed or printed.

Theimage maskistypically at a higher resolution than the main image, if the
mainimageisgrayscaleor color so that the edges can be sharp.

Thereisno default for Photometriclnterpretation, and it isrequired. Do not rely
on applications defaulting to what you want.

37

TIFF 6.0 Specification Final—June 3, 1992

PlanarConfiguration

How the components of each pixel are stored.
Tag =284 (11CH)

Type =SHORT

N =1

1= Chunky format. The component valuesfor each pixel are stored contiguoudly.
The order of the components within the pixel is specified by
Photometricl nterpretation. For example, for RGB data, the datais stored as
RGBRGBRGB...

2= Planar format. The components are stored in separate “ component planes.” The
valuesin StripOffsets and StripByteCounts are then arranged as a 2-dimensional
array, with SamplesPerPixel rows and StripsPerlmage columns. (All of the col-
umnsfor row 0 are stored firgt, followed by the columns of row 1, and so on.)
Photometricl nterpretation describes the type of data stored in each component
plane. For example, RGB datais stored with the Red componentsin one compo-
nent plane, the Green in another, and the Bluein another.

PlanarConfiguration=2 isnot currently in widespread use and it is not recom
mended for general interchange. It isused asan extension and Baseline TIFF
readersare not required to support it.

If SamplesPerPixel is1, PlanarConfiguration isirrelevant, and need not bein-
cluded.

If arow interleave effect is desired, awriter might write out the data as
PlanarConfiguration=2—separate sample planes—but break up the planesinto

multiple strips (one row per strip, perhaps) and interleave the strips.

Default is 1. See also BitsPerSample, SamplesPerPixel.

ResolutionUnit

The unit of measurement for XResolution and Y Resolution.
Tag =296(128.H)

Type =SHORT

N =1

To be used with XResolution and Y Resolution.

1= Noabsolute unit of measurement. Used for imagesthat may have anon-square
aspect ratio, but no meaningful absolute dimensions.
The drawback of ResolutionUnit=1 is that different applications will import the image
at different sizes. Even if the decision is arbitrary, it might be better to use dots per
inch or dots per centimeter, and to pick XResolution and Y Resolution so that the
aspect ratio is correct and the maximum dimension of the image is about four inches
(the“four” isarbitrary.)

2= Inch.
3= Centimeter.
Defaultis2.

38

TIFF 6.0 Specification Final—June 3, 1992

RowsPerStrip

The number of rows per strip.
Tag =278 (116.H)

Type =SHORT or LONG
N =1

TIFF image datais organized into stripsfor faster random access and efficient 1/0
buffering.

RowsPerStrip and Imagel ength together tell us the number of stripsin the entire
image. The equation is:

StripsPerImage = floor ((ImageLength + RowsPerStrip - 1) / RowsPerStrip).

StripsPerlmage is not afield. It is merely avaue that a TIFF reader will want to
compute because it specifies the number of StripOffsets and StripByteCounts for the
image.

Note that either SHORT or LONG values can be used to specify RowsPerStrip.
SHORT values may be used for small TIFF files. It should be noted, however, that
earlier TIFF specification revisions required LONG values and that some software
may not accept SHORT values.

Thedefaultis2**32 - 1, whichiseffectively infinity. That is, the entireimageis
onestrip.

Use of asingle strip is not recommended. Choose RowsPerStrip such that each strip is

about 8K bytes, even if the datais not compressed, since it makes buffering simpler

for readers. The “8K” valueisfairly arbitrary, but seemsto work well.

See also Imagelength, StripOffsets, StripByteCounts, TileWidth, TileL ength,
TileOffsets, TileByteCounts.

SamplesPerPixel

The number of components per pixel.
Tag =277 (115.H)

Type =SHORT

N =1

SamplesPerPixel isusually 1 for bilevel, grayscale, and palette-color images.
SamplesPerPixel isusually 3 for RGB images.

Default = 1. See a so BitsPerSample, Photometricl nterpretation, ExtraSamples.

Software

Name and version number of the software package(s) used to create theimage.
Tag =305 (131.H)

Type =ASClI

Seeaso Make, Moddl.

39

TIFF 6.0 Specification

Final—June 3, 1992

StripByteCounts
For each strip, the number of bytesin the strip after compression.
Tag =279 (117.H)
Type =SHORT or LONG
N = StripsPerlmage for PlanarConfiguration equal to 1.
= SamplesPerPixel * StripsPerlmage for PlanarConfiguration equal to 2
Thistagisrequired for Baseline TIFF files.
No default.
See also StripOffsets, RowsPerStrip, TileOffsets, TileByteCounts.

StripOffsets
For each strip, the byte offset of that strip.
Tag =273 (111.H)
Type =SHORT or LONG
N = StripsPerlmage for PlanarConfiguration equal to 1.
= SamplesPerPixel * StripsPerlmage for PlanarConfiguration equal to 2

The offset is specified with respect to the beginning of the TIFF file. Note that this
impliesthat each strip has alocation independent of thelocations of other strips.
Thisfeature may be useful for editing applications. Thisrequired field isthe only
way for areader to find theimage data. (Unless TileOffsetsisused; see
TileOffsets.)

Notethat either SHORT or LONG values may be used to specify the strip offsets.
SHORT vaues may be used for small TIFFfiles. It should be noted, however, that
earlier TIFF specificationsrequired LONG strip offsets and that some software
may not accept SHORT values.

For maximum compatibility with operating systems such asMS-DOSand Win-
dows, the SripOffsets array should belessthan or equal to 64K bytesin length,
and the stripsthemselves, in both compressed and uncompressed forms, should
not belarger than 64K bytes.

No default. See also StripByteCounts, RowsPerStrip, TileOffsets,
TileByteCounts.

SubfileType

A generd indication of the kind of data contained in this subfile.
Tag =255 (FF.H)

Type =SHORT

N =1

40

TIFF 6.0 Specification

Final—June 3, 1992

Currently defined values are:

full-resolution image data

reduced-resol ution image data

asingle page of amulti-pageimage (see the PageNumber field description).

Notethat severa imagetypes may befoundinasingle TIFF file, with each subfile
described by itsown IFD.

No default.
Thisfield isdeprecated. The NewSubfileType field should be used instead.

Threshholding

For black and white TIFF files that represent shades of gray, the technique used to
convert from gray to black and white pixels.

Tag =263 (107.H)

Type =SHORT

N =1

No dithering or haftoning has been applied to theimage data.

An ordered dither or halftone technique has been applied to theimage data.

A randomized process such as error diffusion has been applied to theimage data.
Default is Threshholding = 1. See also CellWidth, CellLength.

XResolution

The number of pixels per ResolutionUnit in the ImagewWidth direction.
Tag =282 (11A.H)

Type =RATIONAL

N =1

It is not mandatory that the image be actually displayed or printed at the sizeimplied

by this parameter. It is up to the application to use thisinformation asit wishes.

No default. See also Y Resolution, ResolutionUnit.

YResolution

The number of pixels per ResolutionUnit in the Imagelength direction.
Tag =283 (11B.H)

Type =RATIONAL

N =1

No default. See also X Resol ution, ResolutionUnit.

41

TIFF 6.0 Specification Final—June 3, 1992

Section 9: PackBits Compression

This section describes TIFF compression type 32773, asimple byte-oriented run-
length scheme.

Description

In choosing asimple byte-oriented run-length compression scheme, we arbitrarily
chose the Apple Macintosh PackBits scheme. It has agood worst case behavior
(at most 1 extrabyte for every 128 input bytes). For Macintosh users, the tool box
utilities PackBits and UnPackBitswill do thework for you, but it iseasy toimple-
ment your own routines.

A pseudo code fragment to unpack might look likethis:
Loop until you get the nunber of unpacked bytes you are expecting:
Read the next source byte into n.
If nis between 0 and 127 inclusive, copy the next n+l bytes literally.

Else if nis between -127 and -1 inclusive, copy the next byte -n+l
tines.

Else if nis -128, noop.
Endl oop
Intheinverseroutineg, it isbest to encode a 2-byte repeat run asareplicate run

except when preceded and followed by aliteral run. Inthat case, it isbest to merge
thethreerunsinto oneliteral run. Always encode 3-byte repeats asreplicate runs.

That isthe essence of the algorithm. Here are some additiona rules:

» Pack each row separately. Do not compress across row boundaries.

» Thenumber of uncompressed bytes per row is defined to be (Imagewidth + 7)
/ 8. If the uncompressed bitmap is required to have an even number of bytes per
row, decompressinto word-aligned buffers.

» If arunislarger than 128 bytes, encode the remainder of the run as one or more
additional replicate runs.

When PackBits datais decompressed, the result should be interpreted as per com-
pression type 1 (no compression).

42

TIFF 6.0 Specification

Final—June 3, 1992

Section 10: Modified Huffman Compression

References

This section describes TIFF compression scheme 2, amethod for compressing
bilevel databased onthe CCITT Group 3 1D facsimile compression scheme.

» “Standardization of Group 3 facsimile apparatus for document transmission,”
Recommendation T.4, Volume VI, Fascicle V11.3, Terminal Equipment and
Protocolsfor Telematic Services, The International Telegraph and Telephone
Consultative Committee (CCITT), Geneva, 1985, pages 16 through 31.

» “Facsimile Coding Schemes and Coding Control Functionsfor Group 4 Fac-
simile Apparatus,” Recommendation T.6, Volume VI, Fascicle V11.3, Termi-
nal Equipment and Protocolsfor Telematic Services, The International
Telegraph and Telephone Consultative Committee (CCITT), Geneva, 1985,
pages 40 through 48.

Wedo not believe that these documents are necessary in order to implement Com-
pression=2. We have included (verbatim in most places) all the pertinent informa-
tionin this section. However, if you wish to order the documents, you can writeto
ANSI, Attention: Sales, 1430 Broadway, New Y ork, N.Y ., 10018. Ask for the
publication listed above—it contains both Recommendation T.4 and T.6.

Relationship to the CCITT Specifications

Coding Scheme

The CCITT Group 3 and Group 4 specifications describe communications proto-
colsfor aparticular class of devices. They are not by themselves sufficient to
describe adisk dataformat. Fortunately, however, the CCITT coding schemes can
be readily adapted to this different environment. Thefollowing is one such adap-
tation. Most of the languageis copied directly from the CCITT specifications.

See Section 11 for additional CCITT compression options.

A line (row) of datais composed of aseries of variable length code words. Each
code word representsarun length of all whiteor all black. (Actually, morethan
one code word may be required to code agiven run, in amanner described below.)
Whiterunsand black runsalternate.

To ensurethat the receiver (decompressor) maintains color synchronization, all
datalines begin with awhite run-length code word set. If the actual scan line
beginswith ablack run, awhite run-length of zero is sent (written). Black or white
run-lengths are defined by the codewordsin Tables1 and 2. The codewords are
of two types: Terminating code words and Make-up code words. Each run-length
isrepresented by zero or more Make-up code wordsfollowed by exactly one
Terminating code word.

43

TIFF 6.0 Specification

Final—June 3, 1992

Run lengthsin the range of 0 to 63 pels (pixels) are encoded with their appropriate
Terminating code word. Note that thereisadifferent list of code wordsfor black
and white run-lengths.

Run lengthsin the range of 64 to 2623 (2560+63) pels are encoded first by the
Make-up code word representing the run-length that is nearest to, not longer than,
that required. Thisisthen followed by the Terminating code word representing
the difference between the required run-length and the run-length represented by
the Make-up code.

Run lengthsin the range of lengthslonger than or equal to 2624 pelsare coded
first by the Make-up code of 2560. If the remaining part of the run (after the first
Make-up code of 2560) is 2560 pels or greater, additional Make-up code(s) of
2560 areissued until the remaining part of the run becomes lessthan 2560 pels.
Then the remaining part of the runisencoded by Terminating code or by Make-up
code plus Terminating code, according to the range mentioned above.

Itisconsidered an unrecoverable error if the sum of the run-lengthsfor aline does
not equal the value of the ImageWidth field.

New rows always begin on the next available byte boundary.

No EOL codewordsare used. Nofill bitsare used, except for theignored bits at
theend of thelast byte of arow. RTCisnot used.

An encoded CCITT string is self-photometric, defined in terms of white and black
runs. Yet TIFF defines a tag called Photometriclnter pretation that al so purports
to define what iswhite and what is black. Somewhat arbitrarily, we adopt the
following convention:

The" normal” Photometriclnterpretation for bilevel CCITT compressed datais
WhitelsZero. Inthiscase, the CCITT “ white” runsareto beinterpretated as
white, and the CCITT “ black” runsareto beinterpreted asblack. However, if the
Photometriclnterpretation is BlacklsZero, the TIFF reader must reversethe
meaning of white and black when displaying and printing theimage.

44

TIFF 6.0 Specification

Table 1/T.4 Terminating codes

Final—June 3, 1992

VWi te Bl ack
run Code run Code
length word length word

0 00110101 0 0000110111

1 000111 1 010

2 0111 2 11

3 1000 3 10

4 1011 4 011

5 1100 5 0011

6 1110 6 0010

7 1111 7 00011

8 10011 8 000101

9 10100 9 000100

10 00111 10 0000100

11 01000 11 0000101

12 001000 12 0000111

13 000011 13 00000100

14 110100 14 00000111

15 110101 15 000011000

16 101010 16 0000010111
17 101011 17 0000011000
18 0100111 18 0000001000
19 0001100 19 00001100111
20 0001000 20 00001101000
21 0010111 21 00001101100
22 0000011 22 00000110111
23 0000100 23 00000101000
24 0101000 24 00000010111
25 0101011 25 00000011000
6 0010011 26 000011001010
27 0100100 27 000011001011
28 0011000 28 000011001100
29 00000010 29 000011001101
30 00000011 30 000001101000
31 00011010 31 000001101001
32 00011011 32 000001101010
33 00010010 33 000001101011
34 00010011 34 000011010010
35 00010100 35 000011010011
36 00010101 36 000011010100
37 00010110 37 000011010101
38 00010111 38 000011010110
39 00101000 39 000011010111
40 00101001 40 000001101100
41 00101010 41 000001101101
42 00101011 42 000011011010
43 00101100 43 000011011011
44 00101101 44 000001010100
45 00000100 45 000001010101
46 00000101 46 000001010110
47 00001010 47 000001010111
48 00001011 48 000001100100
49 01010010 49 000001100101
50 01010011 50 000001010010
51 01010100 51 000001010011

45

TIFF 6.0 Specification

Final—June 3, 1992

VWi te Bl ack
run Code run Code
length word length word
52 01010101 52 000000100100
53 00100100 53 000000110111
54 00100101 54 000000111000
55 01011000 55 000000100111
56 01011001 56 000000101000
57 01011010 57 000001011000
58 01011011 58 000001011001
59 01001010 59 000000101011
60 01001011 60 000000101100
61 00110010 61 000001011010
62 00110011 62 000001100110
63 00110100 63 000001100111
Table 2/T.4 Make-up codes
VWi te Bl ack
run Code run Code
length word length word
64 11011 64 0000001111
128 10010 128 000011001000
192 010111 192 000011001001
256 0110111 256 000001011011
320 00110110 320 000000110011
384 00110111 384 000000110100
448 01100100 448 000000110101
512 01100101 512 0000001101100
576 01101000 576 0000001101101
640 01100111 640 0000001001010
704 011001100 704 0000001001011
768 011001101 768 0000001001100
832 011010010 832 0000001001101
896 011010011 896 0000001110010
960 011010100 960 0000001110011
1024 011010101 1024 0000001110100
1088 011010110 1088 0000001110101
1152 011010111 1152 0000001110110
1216 011011000 1216 0000001110111
1280 011011001 1280 0000001010010
1344 011011010 1344 0000001010011
1408 011011011 1408 0000001010100
1472 010011000 1472 0000001010101
1536 010011001 1536 0000001011010
1600 010011010 1600 0000001011011
1664 011000 1664 0000001100100
1728 010011011 1728 0000001100101
ECL 000000000001 ECL 00000000000

46

TIFF 6.0 Specification

Additional make-up codes

Final—June 3, 1992

VWi te

and

Bl ack Make- up

run code

| engt h wor d

1792 00000001000
1856 00000001100
1920 00000001101
1984 000000010010
2048 000000010011
2112 000000010100
2176 000000010101
2240 000000010110
2304 000000010111
2368 000000011100
2432 000000011101
2496 000000011110
2560 000000011111

47

TIFF 6.0 Specification Final—June 3, 1992

Part 2: TIFF Extensions

Part 2 contains extensionsto Baseline TIFF. TIFF Extensions are TIFF features
that may not be supported by all TIFF readers. TIFF creators who use these fea-
tureswill haveto work closely with TIFF readersin their part of theindustry to
ensure successful interchange.

The features described in this part were either contained in earlier versions of the
specification, or have been approved by the TIFF Advisory Committee.

48

TIFF 6.0 Specification Final—June 3, 1992

Section 11: CCITT Bilevel Encodings

Thefollowing fields are used when storing binary pixel arrays using one of the
encodings adopted for raster-graphic interchange in numerous CCITT and SO
(International Organization for Standards) recommendations and standards. These
encodings are often spoken of as“Group |11 compression” and “ Group 1V com-
pression” becausetheir application in facsimiletransmission isthe most widely
known.

For the specialized use of these encodings in storing facsimile-transmission images,
further guidelines can be obtained from the TIFF Class F document, available on-line
in the same locations as this specification. This document is administered by another
organization; paper copies are not available from Aldus.

Compression
Tag =259 (103.H)
Type =SHORT

N =1

3= T4-encoding: CCITT T.4 bi-level encoding as specified in section 4, Coding, of
CCITT Recommendation T.4: “ Standardization of Group 3 Facsimile apparatus
for document transmission.” International Telephone and Telegraph Consultative
Committee (CCITT, Geneva: 1988).

Seethe T4AOptionsfield for T4-encoding options such as 1D vs 2D coding.

4= T6-encoding: CCITT T.6 bi-level encoding as specified in section 2 of CCITT
Recommendation T.6: “ Facsimile coding schemes and coding control functions
for Group 4 facsimile apparatus.” International Telephone and Telegraph Consul-
tative Committee (CCITT, Geneva: 1988).

Seethe T60Optionsfield for T6-encoding options such as escapeinto
uncompressed mode to avoid negative-compression cases.

Application in Image Interchange

CCITT Recommendations T.4 and T.6 are specified in terms of the serial bit-by-
bit creation and processing of avariable-length binary string that encodes bi-level
(black and white) pixels of arectangular image array. Generally, the encoding
schemes are described in terms of bit-serial communi cation procedures and the
end-to-end coordination that isrequired to gain reliable delivery over inherently
unreliable datalinks. The Group 4 procedures, with their T6-encoding, represent a
significant simplification becauseit is assumed that areliable communication
medium is employed, whether ISDN or X.25 or some other trustworthy transport
vehicle. Because image-storage systems and computers achieve dataintegrity and
communication reliability in other ways, the T6-encoding tendsto be prefered for
imaging applications. When computer storage and retrieval and interchange of
facsmile material are of interest, the T4-encodings provide abetter match to the

49

TIFF 6.0 Specification

Final—June 3, 1992

current generation of Group 3 facsimile products and their defenses against data
corruption asthe result of transmission defects.

Whichever form of encoding is preferablefor agiven application, therearea
number of adjustmentsthat need to be made to account for the capture of the
CCITT hinary-encoding strings as part of electronically-stored material and digi-
tal-image interchange.

Photometriclnterpretation. Anencoded CCITT string is self-photometric, de-
fined interms of white and black runs. Y et TIFF definesatag called
Photometricl nterpretation that al so purportsto define what iswhite and what is
black. Somewhat arbitrarily, we adopt the following convention:

The"“norma” Photometriclnterpretation for bilevel CCITT compressed datais
WhitelsZero. Inthiscase, the CCITT “white” runsareto beinterpretated aswhite,
andthe CCITT “black” runsareto beinterpreted asblack. However, if the
Photometricl nterpretation is Blackl sZero, the TIFF reader must reverse the mean-
ing of white and black when displaying and printing theimage.

FillOrder. When CCITT encodings are used directly over atypical serial commu-
nication link, the order of the bitsin the encoded string is the sequential order of
the string, bit-by-bit, from beginning to end. This posesthefollowing question: In
which order should consecutive blocks of eight bits be assembled into octets
(standard data bytes) for use within acomputer system? The answer differsde-
pending on whether we are concerned about preserving the seria -transmission
sequence or preserving only the format of byte-organized sequencesin memory
andinstored files.

From the perspective of eectronic interchange, aslong asareceiver’ sreassembly
of bitsinto bytes properly mirrorsthe way in which the byteswere disassembled
by the transmitter, no one careswhich order is seen on the transmission link be-
cause each multiple of 8 bitsistransparently transmitted.

Common practiceisto record arbitrary binary stringsinto storage sequencessuch
that the first sequential bit of the string isfound in the high-order bit of thefirst
octet of the stored byte sequence. Thisisthe standard case specified by TIFF
FillOrder = 1, used in most bitmap interchange and the only caserequiredin
Baseline TIFF. Thisisalso the approach used for the octets of standard 8-bit char-
acter data, with little attention paid to the fact that the most common forms of data
communication transmit and reassemble individual 8-bit frameswith the low-
order-bit first!

For bit-seria transmission to adistant unit whose approach to assembling bitsinto
bytesisunknown and supposed to beirrelevant, it is necessary to satisfy the ex-
pected sequencing of bitsover thetransmission link. Thisisthe normal casefor
communication between facsimile units and also for computers and modems
emulating standard Group 3 facsmile units. Inthiscase, if the CCITT encodingis
captured directly off of the link viastandard communication adapters, TIFF
FillOrder =2 will usually apply to that stored dataform.

Consequently, different TIFF FillOrder cases may arisewhen CCITT encodings
are obtained by synthesiswithin acomputer (including Group 4 transmission,
which istreated more like computer data) instead of by capture from aGroup 3
facsimileunit.

Becausethisis such asubtle situation, with surprisingly disruptive consequences
for FillOrder mismatches, the following practiceis urged whenever CCITT bi-
level encodings are used:

50

TIFF 6.0 Specification

Final—June 3, 1992

a. TIFFFillOrder (tag 266) should always be explicitly specified.

b. FillOrder =1 should be employed wherever possiblein persistent material
that isintended for interchange. Thisisthe only reliable case for widespread
interchange among computer systems, and it isimportant to explicitly con-
firm the honoring of standard assumptions.

c. FillOrder = 2 should occur only in highly-localized and preferably-transient
material, asin afacsimile server supporting group 3 facsimile equipment.
Thetag should be present as a safeguard against the CCITT encoding “leak-
ing” into an unsuspecting application, allowing readersto detect and warn
against the occurence.

There areinterchange situations wherefill order isnot distinguished, aswhen
filtering the CCITT encoding into a PostScript level 2 image operation. Inthis
case, asin most other cases of computer-based information interchange,
FillOrder=1 isassumed, and any padding to amultiple of 8 bitsisaccomplished
by adding a sufficient number of 0-bitsto the end of the sequence.

Sripsand Tiles. When CCITT bi-level encoding isemployed, interaction with
stripping (Section 3) and tiling (Section 15) isasfollows:

a. Decomposetheimageinto segments—individual pixel arraysrepresenting
thedesired strip or tile configuration. The CCITT encoding procedures are
applied most flexibly if the segments each have amultiple of 4 lines.

b. Individualy encode each segment according to the specified CCITT bi-
level encoding, asif each segment isa separate raster-graphic image.

Thereasonfor thisgeneral ruleisthat CCITT bi-level encodings are generally
progressive. That is, theinitial line of pixelsisencoded, and then subsequent lines,
according to avariety of options, are encoded in terms of changesthat need to be
made to the preceding (unencoded) line. For stripsand tilesto beindividually
usable, they must each start asfresh, independent encodings.

Miscellaneousfeatures. Thereare provisionsin CCITT encoding that are mostly
meaningful during facsimile-transmission procedures. Thereisgeneraly no sig-
nificant application when storing imagesin TIFF or other datainterchangefor-
mats, although TIFF applications should be tolerant and flexible in thisregard.
Thesefeaturestend to have significance only when facilitating transfer between
facsimile and non-facsimile applications of the encoded raster-graphic images.
Further considerationsfor fill sequences, end-of-line flags, return-to-control (end-
of-block) sequences and byte padding are introduced in discussion of theindi-
vidual encoding options.

T4Options

Tag =292 (124.H)
Type =LONG

N =1

See Compression=3. Thisfield ismade up of aset of 32 flag bits. Unused bits
must be set to 0. Bit 0 isthe low-order bit.

Bit0 isl1for 2-dimensiona coding (otherwise 1-dimensional isassumed). For
2-D coding, if morethan one strip is specified, each strip must begin witha 1-

51

TIFF 6.0 Specification

Final—June 3, 1992

dimensionally coded line. That is, RowsPerStrip should be amultiple of “ Param-
eter K,” asdocumented inthe CCITT specification.

Bit1l islif uncompressed modeisused.

Bit2 isliffill bitshave been added as necessary before EOL codes such that
EOL aways ends on abyte boundary, thus ensuring an EOL -sequence of 1 byte
preceded by azero nibble: xxxx-0000 0000-0001.

Default isO, for basic 1-dimensional coding. See also Compression.

T60ptions

Tag =293 (125.H)
Type =LONG

N =1

SeeCompression = 4. Thisfieldismade up of aset of 32 flag bits. Unused bits
must be set to 0. Bit O isthelow-order bit. The default valueisO (al bits0).

bit0 isunused and awaysO.
bit1 islif uncompressed modeisallowed inthe encoding.

In earlier versions of TIFF, thistag was named Group4Options. The significance
has not changed and the present definition is compatible. The name of thetag has
been changed to be consistent with the nomenclature of other T.6-encoding appli-
cations.

Readers should honor this option tag, and only this option tag, whenever T.6-
Encoding is specified for Compression.

For T.6-Encoding, each segment (strip or tile) isencoded asif it were aseparate
image. The encoded string from each segment startsafresh byte.

There are no one-dimensional line encodingsin T.6-Encoding. Instead, even the
first row of the segment’ spixel array isencoded two-dimensionally by always
assuming aninvisible preceding row of all-white pixels. The 2-dimensional pro-
cedurefor encoding the body of individua rowsisthe same asthat used for 2-
dimensional T.4-encoding and isdescribed fully inthe CCITT specifications.

The beginning of the encoding for each row of astrip or tileis conducted asif
thereisan imaginary preceding (O-width) white pixel, that isasif afresh run of
white pixels has just commenced. The completion of each lineisencoded asif
thereareimaginary pixelsbeyond theend of the current line, and of the preceding
line, in effect, of colors chosen such that the lineis exactly completable by acode
word, making theimaginary next pixel achanging element that’ s not actually
used.

The encodings of successivelinesfollow contiguously inthe binary T.6-Encoding
stream with no special initiation or separation codewords. There are no provisions
for fill codesor explicit end-of-lineindicators. The encoding of the last line of the
pixel array isfollowed immediately, in place of any additiona line encodings, by
a24-bit End-of-Facsimile Block (EOFB).

000000000001000000000001.B.

52

TIFF 6.0 Specification

Final—June 3, 1992

The EOFB sequenceisimmediately followed by enough 0-bit padding tofit the
entire stream into a sequence of 8-hit bytes.

General Application. Because of the single uniform encoding procedure, without
disruptions by end-of-line codes and shiftsinto one-dimensional encodings, T.6-
encoding isvery popular for compression of bi-level imagesin document imaging
systems. T.6-encoding trades off redundancy for minimum encoded size, relying
on the underlying storage and transmission systemsfor reliable retention and
communication of the encoded stream.

TIFF readerswill operate most smoothly by alwaysignoring bitsbeyond the
EOFB. Somewriters may produce additional bytes of pad bits beyond the byte
containing thefinal bit of the EOFB. Robust readerswill not be disturbed by this
prospect.

It isnot possibleto correctly decode a T.6-Encoding without knowledge of the
exact number of pixelsin each line of the pixel array. ImageWidth (or TileWidth,
if used) must be stated exactly and accurately. If animage or segment is
overscanned, producing extraneous pixels at the beginning or ending of lines,
these pixels must be counted. Any cropping must be accomplished by other
means. It isnot possibleto recover from apixel-count deviation, even when oneis
detected. Failure of any row to be completed as expected is cause for abandoning
further decoding of the entire segment. Thereisno requirement that ImageWidth
beamultiple of eight, of course, and readers must be prepared to pad the final
octet bytes of decoded bitmap rowswith additiona bits.

If aTIFF reader encounters EOFB before the expected number of lineshas been
extracted, it isappropriate to assume that the missing rows consist entirely of
white pixels. Cautious readers might produce an unobtrusive warning if such an
EOFB isfollowed by anything other than pad bits.

Readersthat successfully decode the RowsPerStrip (or TileL ength or residual
Imagelength) number of linesare not required to verify that an EOFB follows.
Thatis, it isgenerally appropriate to stop decoding when the expected lines are
decoded or the EOFB is detected, whichever occursfirst. Whether error indica-
tions or warnings are also appropriate depends upon the application and whether
more precise troubleshooting of encoding deviationsisimportant.

TIFF writers should aways encode the full, prescribed number of rows, with a
proper EOFB immediately following in the encoding. Padding should be by the
least number of 0-bits needed for the T.6-encoding to exactly occupy amultiple of
8 hits. Only 0-bits should be used for padding, and StripByteCount (or
TileByteCount) should not extend to any bytes not containing properly-formed
T.6-encoding. In addition, even though not required by T.6-encoding rules, suc-
cessful interchange with alarge variety of readersand applicationswill be en-
hanced if writers can arrange for the number of pixels per line and the number of
lines per strip to be multiples of eight.

Uncompressed Mode. Although T.6-encodings of simple bi-level imagesresult
in datacompressions of 10:1 and better, some pixel-array patternshave T.6-
encodingsthat require more bitsthan their smple bi-level bitmaps. When such
cases are detected by encoding procedures, thereisan optional extension for
shifting to aform of uncompressed coding within the T.6-encoding string.

Uncompressed mode is not well-specified and many applications discourageits
usage, prefering aternatives such as different compressions on a segment-by-
segment (strip or tile) basis, or by simply leaving theimage uncompressed in its

53

TIFF 6.0 Specification

Final—June 3, 1992

entirety. The main complication for readersisin properly restoring T.6-encoding
after the uncompressed sequenceislaid down in the current row.

Readersthat have no provision for uncompressed modewill generally reject any
caseinwhich theflag is set. Readersthat are able to process uncompressed-mode
content within T.6-encoding strings can safely ignore thisflag and smply process
any uncompressed-mode occurences correctly.

Writersthat are unable to guarantee the absence of uncompressed-mode material
inany of the T.6-encoded segments must set the flag. The flag should be cleared
(or defaulted) only when absence of uncompressed-mode material isassured.
Writersthat are ableto inhibit the generation of uncompressed-mode extensions
are encouraged to do so in order to maximize the acceptability of their T.6-encod-
ing stringsin interchange situations.

Because uncompressed-maode is not commonly used, the following descriptionis
best taken as suggestive of the general machinery. Interpolation of fine details can
easily vary between implementations.

Uncompressed modeis signalled by the occurence of the 10-bit extension code
string

0000001111.B

outside of any run-length make-up code or extension. Origina unencoded image
information follows. In this unencoded information, a0-bit evidently signifiesa
white pixel, al-bit signifiesablack pixel, and the TIFF Photometricl nterpretation
will influence how these bits are mapped into any final uncompressed bitmap for
use. The only modification made to the unencoded information isinsertion of a 1-
bit after every block of five consecutive 0-bits from the original imageinforma-
tion. Thisisatransparency devicethat allowslonger sequencences of O-bitsto be
reserved for control conditions, especially ending the uncompressed-mode se-
guence. When it istimeto return to compressed maode, the 8-bit exit sequence

0000001t.B

isappended to the material. The 0-bits of the exit sequence are not considered in
applying the 1-bit insertion rule; up to four information O-bits can legally precede
theexit sequence. Thetrailing bit, ‘t,” specifiesthe color (viaO or 1) that isunder-
stood in the next run of compressed-mode encoding. Thisletsacolor other than
white be assumed for the 0-width pixel on the left of the edge between the last
uncompressed pixel and the resumed 2-dimensional scan.

Writers should confine uncompressed-mode sequencesto theinteriors of indi-
vidual rows, never attempting to “wrap” from onerow to the next. Readers must
operate properly when the only encoding for asingle row consists of an
uncompressed-mode escape, acomplete row of (proper 1-inserted) uncompressed
information, and the extension exit. Technically, the exit pixel, ‘t,” should prob-
ably then be the opposite color of thelast true pixel of the row, but readers should
be generousin thiscase.

In handling these complex encodings, the encounter of material from adefective
source or acorrupted fileis particularly unsettling and mysterious. Robust readers
will dowell to defend against falling off the end of the world; e.g., unexpected
EOFB sequences should be handled, and attempted accessto data bytesthat are
not within the bounds of the present segment (or the TIFF fileitself) should be
avoided.

54

TIFF 6.0 Specification Final—June 3, 1992

Section 12: Document Storage and Retrieval

Thesefields may be useful for document storage and retrieval applications. They
will very likely beignored by other applications.

DocumentName

The name of the document from which thisimage was scanned.
Tag =269 (10D.H)

Type =ASClI

See also PageName.

PageName

The name of the page from which thisimage was scanned.
Tag =285 (11D.H)

Type =ASClI

See aso DocumentName.

No default.

PageNumber

The page number of the page from which thisimage was scanned.
Tag =297 (129.H)

Type =SHORT

N =2

Thisfield is used to specify page numbers of amultiple page (e.g. facsimile) docu-
ment. PageNumber[0] isthe page number; PageNumber[1] isthetotal number of
pagesin the document. If PageNumber[1] is O, thetotal number of pagesin the
document is not available.

Pages need not appear in numerical order.
Thefirst pageisnumbered O (zero).
No default.

XPosition

X position of theimage.
Tag =286 (11E.H)
Type =RATIONAL
N =1

55

TIFF 6.0 Specification Final—June 3, 1992

The X offset in ResolutionUnits of the left side of theimage, with respect to the
left side of the page.

No default. Seealso Y Position.

YPosition

Y position of theimage.
Tag =287 (11F.H)
Type =RATIONAL
N =1

TheY offset in ResolutionUnits of thetop of theimage, with respect to the top of
the page. Inthe TIFF coordinate scheme, the positive Y direction isdown, so that
Y Position isalways positive.

No default. See also X Position.

56

TIFF 6.0 Specification

Final—June 3, 1992

Section 13: LZW Compression

Restrictions

Reference

Characteristics

This section describes TIFF compression scheme 5, an adaptive compression
scheme for raster images.

When LZW compression was added to the TIFF specification, in Revision 5.0, it
wasthought to be public domain. Thisis, apparently, not the case.

Thefollowing paragraph has been approved by the Unisys Corporation:

“TheLZW compression method is said to be the subject of United States patent
number 4,558,302 and corresponding foreign patents owned by the Unisys Corpo-
ration. Software and hardware developers may be required to license this patent in
order to develop and market products using the TIFF LZW compression option.
Unisys has agreed that developers may obtain such alicense on reasonable, non-
discriminatory terms and conditions. Further information can be obtained from:
Welch Licensing Department, Office of the General Counsel, M/S C1SW19,
Unisys Corporation, Blue Bell, Pennsylvania, 19424.”

Reportedly, there are also other companies with patentsthat may affect LZW
implementors.

Terry A. Welch, “ A Techniquefor High Performance Data Compression”, |IEEE
Computer, vol. 17 no. 6 (June 1984). Describesthe basic Lempel-Ziv & Welch
(LZW) agorithmin very general terms. The author’ sgoa isto describe a hard-
ware-based compressor that could be built into adisk controller or database en-
gineand used on all types of data. Thereisno specific discussion of raster images.
This section gives sufficient information so that the articleis not required reading.

LZW compression hasthefollowing characteristics:

» LZW worksfor imagesof variousbit depths.

* LZW hasareasonable worst-case behavior.

* LZW handlesawide variety of repetitive patternswell.

» LZW isreasonably fast for both compression and decompression.
* LZW doesnot require floating point software or hardware.

57

TIFF 6.0 Specification

The Algorithm

Final—June 3, 1992

* LZW s lossless. All information is preserved. But if noise or information is
removed from an image, perhaps by smoothing or zeroing some low-order
bitplanes, LZW compresses images to a smaller size. Thus, 5-bit, 6-bit, or 7-bit
data masquerading as 8-bit data compresses better than true 8-bit data. Smooth
images also compress better than noisy images, and simple images compress
better than complex images.

» LZW works quite well on bilevel images, too. On our test images, it almost
always beat PackBits and generally tied CCITT 1D (Modified Huffman) com-
pression. LZW also handles halftoned data better than most bilevel compres-
sion schemes.

Each strip is compressed independently. We strongly recommend that
RowsPerStrip be chosen such that each strip contains about 8K bytes before com-
pression. We want to keep the strips small enough so that the compressed and
uncompressed versions of the strip can be kept entirely in memory, even on small
machines, but are large enough to maintain nearly optimal compression ratios.

The LZW algorithm is based on a translation table, or string table, that maps
strings of input characters into codes. The TIFF implementation uses variable-
length codes, with a maximum code length of 12 bits. This string table is different
for every strip and does not need to be reatained for the decompressor. The trick is
to make the decompressor automatically build the same table as is built when the
data is compressed. We use a C-like pseudocode to describe the coding scheme:
InitializeString Table();
WriteCode(ClearCode);
Q=the empty string;
for each characterin the strip {
K =GetNextCharacter();
if Q+Kisinthe string table {
Q= Q+K; [*string concatenation */
}else{
WriteCode (CodeFromString(Q);
AddTableEntry(Q+K);
Q=K;
}
}*end of forloop */
WriteCode (CodeFromString(Q));
WriteCode (EndOfinformation);

That's it. The scheme is simple, although it is challenging to implement effi-
ciently. But we need a few explanations before we go on to decompression.

The “characters” that make up the LZW strings are bytes containing TIFF
uncompressed (Compression=1) image data, in our implementation. For example,
if BitsPerSample is 4, each 8-bit LZW character will contain two 4-bit pixels. If
BitsPerSample is 16, each 16-bit pixel will span two 8-bit LZW characters.

Itis also possible to implement a version of LZW in which the LZW character
depth equals BitsPerSample, as described in Draft 2 of Revision 5.0. But there is a
major problem with this approach. If BitsPerSample is greater than 11, we can not

58

TIFF 6.0 Specification

Final—June 3, 1992

use 12-bit-maximum codes and the resulting LZW table is unacceptably large.
Fortunately, due to the adaptive nature of LZW, we do not pay asignificant com-
pression ratio penalty for combining several pixelsinto one byte before compress-
ing. For example, our 4-bit sample images compressed about 3 percent worse, and
our 1-bit images compressed about 5 percent better. And it iseasier towritean
LZW compressor that always uses the same character depth than it isto write one
that handles varying depths.

We can now describe some of the routine and variablereferencesin our
pseudocode:

InitializeStringTable() initializesthe string table to contain all possiblesingle-
character strings. There are 256 of them, numbered O through 255, since our char-
actersare bytes.

WriteCode() writes acodeto the output stream. Thefirst codewrittenisa
ClearCode, which isdefined to be code #256.

Q isour “prefix string.”

GetNextCharacter() retrievesthe next character value from theinput stream. This
will beanumber between 0 and 255 because our characters are bytes.

The"+" signsindicate string concatenation.

AddTableEntry() adds atable entry. (InitializeStringTable() has already put 256
entriesin our table. Each entry consists of asingle-character string, and its associ-
ated code value, which, in our application, isidentical to the character itself. That
is, the Oth entry in our table consists of the string <0>, with a corresponding code
value of <0>, the 1st entry in the table consists of the string <1>, with acorre-
sponding code value of <1> and the 255th entry in our table consists of the string
<255>, with acorresponding code val ue of <255>.) So, thefirst entry that added
to our string table will be at position 256, right? Well, not quite, because were-
serve code#256 for aspecia “Clear” code. We also reserve code #257 for aspe-
cia “EndOfInformation” code that we write out at the end of the strip. So thefirst
multiple-character entry added to the string table will be at position 258.

For example, suppose we have input datathat lookslikethis:
Pixd 0:<7>
Pixd 1.<7>
Pixd 2:<7>
Pixel 3:<8>
Pixel 4:<8>
Pixd 5:<7>
Pixd 6:<7>
Pixdl 7:<6>
Pixel 8:<6>

First, weread Pixel Ointo K. QK isthen simply <7>, because Q isan empty string
at thispoint. Isthe string <7> already in the string table? Of course, becauseall
single character stringswere put in thetable by InitializeStringTable(). So set Q
equal to <7>, and then go to the top of theloop.

59

TIFF 6.0 Specification

Final—June 3, 1992

Read Pixel 1into K. Does QK (<7><7>) exist inthe string table? No, so wewrite
the code associated with Q to output (write <7> to output) and add QK (<7><7>)
to thetable asentry 258. Store K (<7>) into Q. Note that although we have added
the string consisting of Pixel 0 and Pixel 1to thetable, we“re-use” Pixel 1 asthe

beginning of the next string.

Back at thetop of theloop, weread Pixel 2into K. Does QK (<7><7>) existinthe
string table? Y es, the entry we just added, entry 258, contains exactly <7><7>. So
weadd K to theend of Q so that Q isnow <7><7>.

Back at thetop of theloop, weread Pixel 3into K. Does QK (<7><7><8>) exist
in the string table? No, so we write the code associated with Q (<258>) to output
and then add QK to thetable asentry 259. Store K (<8>) into Q.

Back at thetop of theloop, weread Pixel 4into K. Does QK (<8><8>) existinthe
string table? No, so wewrite the code associated with Q (<8>) to output and then
add QK tothetable asentry 260. StoreK (<8>) into Q.

Continuing, we get the following results:

After reading: Wewriteto output: And add table entry:
Pixel O

Pixel 1 <7> 258; <7><7>

Pixel 2

Pixel 3 <258> 259; <7><7><8>
Pixel 4 <8> 260:<8><8>

Pixel 5 <8> 261:; <8><7>

Pixel 6

Pixel 7 <258> 262; <7><7><6>
Pixel 8 <6> 263:; <6><6>

WriteCode() & so requires some explanation. In our example, the output code
stream, <7><258><8><8><258><6> should be written using as few bitsas pos-
sible. When we arejust starting out, we can use 9-bit codes, since our new string
table entries are greater than 255 but lessthan 512. After adding table entry 511,
switch to 10-bit codes (i.e., entry 512 should be a 10-bit code.) Likewise, switch to
11-bit codes after table entry 1023, and 12-bit codes after table entry 2047. We
will arbitrarily limit ourselvesto 12-bit codes, so that our table can have at most
40096 entries. Thetable should not be any larger.

Whenever you add a code to the output stream, it “ counts’ toward the decision
about bumping the code bit length. Thisisimportant when writing thelast code
word beforean EOI code or ClearCode, to avoid codelength errors.

What happensif we run out of room in our string table? Thisiswherethe
ClearCode comesin. Assoon aswe use entry 4094, we write out a (12-hit)
ClearCode. (If wewait any longer to write the ClearCode, the decompressor
might try to interpret the ClearCode as a 13-bit code.) At this point, the compres-
sor reinitializes the string table and then writes out 9-bit codes again.

Notethat whenever you write acode and add atable entry, Q isnot left empty. It
contains exactly one character. Be careful not to lose it when you write an end-of -
table ClearCode. Y ou can either writeit out asa 12-bit code before writing the
ClearCode, in which case you need to do it right after adding table entry 4093, or

60

TIFF 6.0 Specification

LZW Decoding

Final—June 3, 1992

you canwriteit asa9-bit code after the ClearCode . Decompression givesthe
sameresult in either case.

To makethingsalittle simpler for the decompressor, we will require that each
strip begins with a ClearCode and ends with an EndOfInformation code. Every

L ZW-compressed strip must begin on abyte boundary. It need not beginon a
word boundary. L ZW compression codes are stored into bytesin high-to-low-
order fashion, i.e., FillOrder isassumed to be 1. The compressed codes are written
as bytes (not words) so that the compressed datawill beidentical whether itisan
‘1I" or ‘MM’ file.

Notethat the LZW string tableisacontinuoudly updated history of the strings that
have been encountered in the data. Thus, it reflects the characteristics of the data,
providing ahigh degree of adaptability.

The procedure for decompression isalittle more complicated:
whi I e ((Code = Get Next Code()) != Eoi Code) {
if (Code == O earCode) {
InitializeTable();
Code = Get Next Code();
i f (Code == Eoi Code)
br eak;
WiteString(StringFronmCode(Code));
d dCode = Code;
} /* end of O earCode case */
el se {
if (I'sInTabl e(Code)) {
WiteString(StringFromCode(Code));
AddSt ri ngToTabl e(Stri ngFronCode(d dCode
) +Fi rst Char (St ri ngFronCode(Code))) ;
d dCode = Code;
} else {
Qut String = StringFromCode(d dCode) +
Fi rst Char (StringFronCode(O dCode));
WiteString(QutString);
AddStringToTabl e(Qut String);
0 dCode = Code;
}
} [* end of not-C earCode case */
} /* end of while loop */

The function GetNextCode() retrievesthe next code from the LZW-coded data. It
must keep track of bit boundaries. It knowsthat the first codethat it getswill bea
9-bit code. We add atable entry each time we get acode. So, GetNextCode() must
switch over to 10-bit codes as soon as string #510is stored into the table. Smi-
larly, the switch ismadeto 11-bit codes after #1022 and to 12-bit codes after
#2046.

61

TIFF 6.0 Specification

Final—June 3, 1992

The function StringFromCode() getsthe string associated with a particular code
from the string table.

Thefunction AddStringToTable() adds astring to the string table. The“+” sign
joining thetwo parts of the argument to AddStringToTableindicates string con-
catenation.

StringFromCode() looks up the string associated with agiven code.
WriteString() adds a string to the output stream.

When SamplesPerPixel Is Greater Than 1

Implementation

LZW Extensions

So far, we have described the compression scheme asif SamplesPerPixel were
always 1, asisthe case with palette-color and grayscaleimages. But what do we
do with RGB image data?

Testson our sampleimagesindicate that the LZW compression ratiois nearly
identical whether PlanarConfiguration=1 or PlanarConfiguration=2, for RGB
images. So, use whichever configuration you prefer and simply compressthe
bytesin the strip.

Note: Compression ratios on our test RGB images were disappointingly low:
between 1.1to 1 and 1.5to 1, depending on theimage. Vendors are urged to do
what they can to remove as much noise as possible from their images. Preliminary
testsindicate that significantly better compression ratios are possible with less-
noisy images. Even something as simple as zeroing-out one or two least-signifi-
cant bitplanes can be effective, producing little or no perceptibleimage
degradation.

The exact structure of the string table and the method used to determineif astring
isaready in thetable are probably the most significant design decisionsin the
implementation of aL.ZW compressor and decompressor. Hashing has been sug-
gested as a useful technique for the compressor. We have chosen atree-based
approach, with good results. The decompressor ismore straightforward and faster
because no search isinvolved—strings can be accessed directly by code value.

Someimages compress better using LZW coding if they arefirst subjected to a
processwherein each pixel valueisreplaced by the difference between the pixel
and the preceding pixel. Seethe following Section.

62

TIFF 6.0 Specification

Acknowledgments

Final—June 3, 1992

Seethefirst page of thissection for the LZW reference.

The use of ClearCode as atechnique for handling overflow was borrowed from
the compression scheme used by the Graphics I nterchange Format (GIF), asmall-
color-paint-image-file format used by CompuServe that al so uses an adaptation of
the LZW technique.

63

TIFF 6.0 Specification

Final—June 3, 1992

Section 14: Differencing Predictor

The algorithm

This section defines aPredictor that greatly improves compression ratiosfor some
images.

Predictor

Tag =317(13D.H)
Type =SHORT

N =1

A predictor isamathematical operator that is applied to theimage databeforean
encoding schemeisapplied. Currently thisfield isused only with LZW (Com-
pression=5) encoding because LZW is probably the only TIFF encoding scheme
that benefits significantly from a predictor step. See Section 13.

The possiblevalues are:
No prediction scheme used before coding.
Horizontal differencing.

Defaultisl.

Make use of the fact that many continuous-tone imagesrarely vary much in pixel
valuefrom one pixel to the next. In such images, if we replace the pixel valuesby
differences between consecutive pixels, many of the differences should be O, plus
or minus 1, and so on. This reduces the apparent information content and allows
LZW to encode the datamore compactly.

Assuming 8-bit grayscale pixelsfor the moment, abasic C implementation might
look something likethis:

char imge[][1;

int row, col;

/* take horizontal differences:
*|
for (row = 0; row < nrows; rowt)
for (col =ncols - 1; col >=1; col--)
i mge[row [col] -= imge[row[col-1];

If wedon’t have 8-bit components, we need to work alittle harder to make better
use of the architecture of most CPUs. Suppose we have 4-bit components packed
two per bytein the normal TIFF uncompressed (i.e., Compression=1) fashion. To
find differences, wewant to first expand each 4-bit component into an 8-bit byte,
so that we have one component per byte, low-order justified. Wethen perform the
horizontal differencingillustrated in the example above. Oncethe differencing
has been completed, we then repack the 4-bit differencestwo to abyte, inthe
normal TIFF uncompressed fashion.

64

TIFF 6.0 Specification

Final—June 3, 1992

If the components are greater than 8 bits deep, expanding the componentsinto 16-
bit wordsinstead of 8-bit bytes seems|like the best way to perform the subtraction
on most computers.

Notethat we have not lost any data up to this point, nor will welose any datalater
on. It might seem at first that our differencing might turn 8-bit componentsinto 9-
bit differences, 4-bit componentsinto 5-bit differences, and so on. But it turns out
that we can completely ignore the“ overflow” bits caused by subtracting alarger
number from asmaller number and still reverse the process without error. Normal
two’ s complement arithmetic does just what we want. Try an example by hand if
you need more convincing.

Up to this point we have implicitly assumed that we are compressing bilevel or
grayscaleimages. An additional consideration arisesin the case of color images.

If PlanarConfigurationis 2, thereisno problem. Differencing worksthe same asit
doesfor grayscale data

If ManarConfigurationis 1, however, thingsget alittletrickier. If wedidn’'t do
anything special, we would subtract red component val ues from green component
values, green component val ues from blue component values, and blue compo-
nent values from red component values. Thiswould not givethe LZW coding
stage much redundancy to work with. So, wewill do our horizontal differences
with an offset of SamplesPerPixel (3, inthe RGB case). In other words, we will
subtract red from red, green from green, and blue from blue. The LZW coding
stageisidentical to the SamplesPerPixel=1 case. Werequire that BitsPerSample
bethe samefor all 3 components.

Results and Guidelines

LZW without differencing workswell for 1-bit images, 4-bit grayscaleimages,
and many pal ette-color images. But natural 24-bit color images and some 8-bit
grayscaleimages do much better with differencing.

Although the combination of LZW coding with horizontal differencing does not
result in any loss of data, it may be worthwhilein some situationsto give up some
information by removing as much noise as possible from the image data before
doing the differencing, especially with 8-bit components. The simplest way to get
rid of noiseisto mask off one or two low-order bits of each 8-bit component. On
our 24-bit test images, LZW with horizontal differencing yielded an average
compression ratio of 1.4 to 1. When the low-order bit was masked from each
component, the compression ratio climbed to 1.8 to 1; the compression ratio was
2.4t0 1 when masking two bits, and 3.4 to 1 when masking three bits. Of course,
the more you mask, the more you risk losing useful information along with the
noise. We encourage you to experiment to find the best compromise for your
device. For some applications, it may be useful to let the user makethe final deci-
sion.

Incidentally, wetried taking both horizontal and vertical differences, but the extra
complexity of two-dimensional differencing did not appear to pay off for most of
our test images. About onethird of theimages compressed dlightly better with
two-dimensional differencing, about one third compressed dlightly worse, and the
rest were about the same.

65

TIFF 6.0 Specification

Final—June 3, 1992

Section 15: Tiled Images

Introduction

Motivation
This section describes how to organizeimagesinto tilesinstead of strips.

For low-resolution to medium-resol ution images, the standard TIFF method of
breaking theimage into stripsis adequate. However high-resolution images can
be accessed more efficiently—and compression tends to work better—if theim-
ageisbroken into roughly squaretilesinstead of horizontally-wide but vertically-
narrow strips.

Relationship to existing fields

When thetiling fields described below areused, they replacethe
StripOffsets, StripByteCounts, and RowsPer Strip fields. Use of tileswill
therefore cause older TIFF readersto give up because they will have no way of
knowing where theimage datais or how it is organized. Do not use both strip-
oriented and tile-oriented fieldsin the same TIFFfile,

Padding

Tilesizeisdefined by TileWidth and TileLength. All tilesin animage arethe
same size, that is, they have the same pixel dimensions.

Boundary tiles are padded to the tile boundaries. For example, if TileWidthis64
and ImageWidth is 129, then theimageis 3 tileswide and 63 pixels of padding
must be added tofill the rightmost column of tiles. The same holdsfor TilelLength
and Imagel_ength. It doesn’t matter what valueis used for padding, because good
TIFF readersdisplay only the pixels defined by Imagewidth and Imagel ength
and ignore any padded pixels. Some compression schemeswork best if the pad-
ding isaccomplished by replicating thelast column and last row instead of pad-
dingwith0’s.

The pricefor padding theimage out to tile boundariesisthat some spaceis
wasted. But compression usually shrinksthe padded areasto almost nothing.
Evenif dataisnot compressed, remember that tiling isintended for largeimages.
Largeimages havelots of comparatively small tiles, so that the percentage of
wasted spacewill bevery small, generally on the order of afew percent or less.

The advantages of padding animageto thetile boundaries are that implementa-
tions can be simpler and faster and that it is more compatible with tile-oriented
compression schemes such as JPEG. See Section 22.

Tilesare compressed individually, just as strips are compressed. That is, each row
of datainatileistreated asa separate* scanling” when compressing. Compres-

66

TIFF 6.0 Specification

Fields

Final—June 3, 1992

sion includes any padded areas of the rightmost and bottom tiles so that all the
tilesin an image are the same size when uncompressed.

All of thefollowing fields are required for tiled images:

TileWidth

Tag =322 (142H)

Type =SHORT or LONG

N =1

Thetilewidthin pixels. Thisisthe number of columnsin eachtile.

Assuming integer arithmetic, three computed valuesthat are useful in the follow-
ing field descriptions are:

TilesAcross= (ImageWidth + TileWidth - 1) / TileWidth
TilesDown = (ImagelLength + TileLength - 1) / TileLength
TilesPerlmage = TilesAcross* TilesDown

These computed values are not TIFF fields; they are simply values determined by
the ImageWidth, Tilewidth, Imagelength, and TileL ength fields.

TileWidth and ImageWidth together determine the number of tilesthat span the
width of theimage (TilesAcross). TileL ength and | magelength together deter-
mine the number of tilesthat span the length of theimage (TilesDown).

Werecommend choosing TileWidth and Tilelength such that the resulting tiles
are about 4K to 32K bytes before compression. This seemsto be areasonable
valuefor most applications and compression schemes.

TileWidth must be amultiple of 16. Thisrestriction improves performancein
some graphics environments and enhances compatibility with compression
schemes such as JPEG.

Tilesneed not be square.

Notethat ImageWidth can belessthan TileWidth, although this meansthat the
tilesaretoo large or that you are using tiling on really small images, neither of
which isrecommended. The same observation holdsfor Imagelength and
TileLength.

No default. See also TileL ength, TileOffsets, TileByteCounts.

TileLength

Tag =323 (143.H)
Type =SHORT or LONG
N =1

67

TIFF 6.0 Specification Final—June 3, 1992

Thetilelength (height) in pixels. Thisisthe number of rowsin eachtile.

TileLength must be amultiple of 16 for compatibility with compression schemes
such as JPEG.

Replaces RowsPerStripintiled TIFF files.
No default. See also TileWidth, TileOffsets, TileByteCounts.

TileOffsets

Tag =324 (144H)

Type =LONG

N = TilesPerlmagefor PlanarConfiguration = 1

= SamplesPerPixe * TilesPerlmagefor PlanarConfiguration =2

For each tile, the byte offset of that tile, as compressed and stored on disk. The
offset is specified with respect to the beginning of the TIFF file. Note that this
impliesthat each tile has alocation independent of the locations of other tiles.

Offsets are ordered | eft-to-right and top-to-bottom. For PlanarConfiguration = 2,
the offsetsfor the first component plane are stored first, followed by al the offsets
for the second component plane, and so on.

No default. See also TileWidth, TileLength, TileByteCounts.

TileByteCounts
Tag =325 (145.H)
Type =SHORT or LONG
N = TilesPerlmage for PlanarConfiguration =1
= SamplesPerPixe * TilesPerlmagefor PlanarConfiguration =2
For each tile, the number of (compressed) bytesin that tile.
See TileOffsetsfor adescription of how the byte counts are ordered.
No default. See also TileWidth, TileLength, TileOffsets.

68

TIFF 6.0 Specification

Final—June 3, 1992

Section 16: CMYK Images

Motivation

Requirements

This section describes how to store separated (usually CMY K) image datain a
TIFFfile.

In aseparated image, each pixel consists of N components. Each component
represents the amount of aparticular ink that isto be used to represent theimage at
that location, typically using ahalftoning technique.

For example, inaCMY K image, each pixel consists of 4 components. Each com-
ponent represents the amount of cyan, magenta, yellow, or black processink that
isto be used to represent theimage at that location.

Thefieldsdescribed in this section can be used for more than simple 4-color pro-
cess (CMYK) printing. They can a so be used for describing an image made up of
more than 4 inks, such an image made up of acyan, magenta, yellow, red, green,
blue, and black inks. Such animageis sometimes called ahigh-fidelity image and
has the advantage of dightly extending the printed color gamut.

Since separated images are quite device-specific and are restricted to color
prepress use, they should not be used for general image datainterchange. Sepa-
rated images are to be used only for prepress applicationsin which the
imagesetter, paper, ink, and printing press characteristics are known by the creator
of the separated image.

Note: thereisno single method of converting RGB datato CMY K dataand back.
In aperfect world, something close to cyan = 255-red, magenta= 255-green, and
yellow = 255-blue should work; but characteristics of printing inksand printing
presses, economics, and the fact that the meaning of RGB itself depends on other
parameters combineto spoil thissimplicity.

In addition to satisfying the normal Baseline T1FF requirements, a separated TIFF

file must have thefollowing characteristics:

» SamplesPer Pixel = N. SHORT. The number of inks. (For example, N=4 for
CMYK, because we have one component each for cyan, magenta, yellow, and
black.)

» BitsPerSample=8,8,8,8 (for CMYK). SHORT. For now, only 8-bit compo-
nents are recommended. Thevalue“8” isrepeated SamplesPerPixel times.

» Photometriclnterpretation =5 (Separated - usually CMYK). SHORT.
The components represent the desired percent dot coverage of each ink, where
thelarger component values represent a higher percentage of ink dot coverage
and smaller values represent less coverage.

69

TIFF 6.0 Specification Final—June 3, 1992

Fields

In addition, there are some new fields, all of which are optional.

InkSet

Tag =332(14C.H)
Type =SHORT

N =1

The set of inks used in a separated (Photometricl nterpretation=5) image.

1= CMYK. Theorder of the componentsiscyan, magenta, yellow, black. Usually, a
value of 0 represents 0% ink coverage and avalue of 255 represents 100% ink
coverage for that component, but see DotRange below. The InkNamesfield
should not exist when InkSet=1.

2= not CMYK. SeetheInkNamesfield for adescription of theinksto be used.
Defaultis1 (CMYK).

NumberOfinks
Tag =334(14E.H)
Type =SHORT

N =1

The number of inks. Usually equal to SamplesPerPixel, unlessthere are extra
samples.

See aso ExtraSamples.
Defaultis4.

InkNames
Tag =333(14D.H)
Type =ASClI

N =total number of charactersin all theink name strings, including the
NULSs.

The name of each ink used in a separated (Photometricl nterpretation=5) image,
written asalist of concatenated, NUL -terminated ASCI|I strings. The number of
strings must be equal to NumberOfinks.

The samplesarein the same order astheink names.
See a0 InkSet, NumberOfinks.
No default.

70

TIFF 6.0 Specification

History

Final—June 3, 1992

DotRange

Tag =336(150.H)

Type =BYTEor SHORT

N =2, or 2* SamplesPerPixel

The component valuesthat correspond to a0% dot and 100% dot. DotRange[0]
correspondsto a0% dot, and DotRange[1] correspondsto a 100% dot.

If aDotRange pair isincluded for each component, the valuesfor each component
are stored together, so that the pair for Cyan would befirgt, followed by the pair
for Magenta, and so on. Use of multiple dot rangesis, however, strongly discour-
aged intheinterests of simplicity and compatibility with ANS IT8 standards.

A number of prepress systemsliketo keep some “headroom” and “footroom” on
both ends of therange. What to do with componentsthat are lessthan the 0% aim
point or greater than the 100% aim point is not specified and is application-depen-
dent.

It isstrongly recommended that aCMY K TIFF writer not attempt to use thisfield
to reverse the sense of the pixel values so that smaller values mean moreink in-
stead of lessink. That is, DotRange[0] should be lessthan DotRange[1].

DotRange[0] and DotRange[1] must be within the range [0, (2** BitsPerSample) -
1].

Default: acomponent value of O correspondsto a 0% dot, and acomponent value
of 255 (assuming 8-bit pixels) correspondsto a100% dot. That is, DotRange[0] =
0 and DotRange[1] = (2**BitsPerSample) - 1.

TargetPrinter
Tag =337 (151LH)
Type =ASClI

N =any

A description of the printing environment for which this separation isintended.

This Section has been expanded from earlier drafts, with the addition of the
InkSet, InkNames, Number Of I nks, DotRange, and TargetPrinter, butis
backward-compatible with earlier draft versions.

Possible future enhancements: definition of the characterization information so
that the CM YK data can be retargeted to adifferent printing environment and so
that display on aCRT or proofing device can more accurately represent the color.
ANSI IT8isworking on such aproposal.

71

TIFF 6.0 Specification

Final—June 3, 1992

Section 17: HalftoneHints

Introduction

This section describes aschemefor properly placing highlights and shadowsin
halftoned images.

The single most easily recognized failing of continuoustoneimagesistheincor-
rect placement of highlight and shadow. It iscritical that ahalftone processbe
capable of printing the lightest areas of the image asthe smallest halftone spot
capable of the output device, at the specified printer resolution and screen ruling.
Specular highlights (small ultra-white areas) aswell asthe shadow areas should
be printable as paper only.

Consigtency in highlight and shadow placement all owsthe user to obtain predict-
ableresultson awide variety of halftone output devices. Proper implementation
of theHalftoneHintsfield will provide asignificant step toward device indepen-
dent imaging, such that low cost printers may to be used as effective proofing
devicesfor imageswhich will later be halftoned on ahigh-resolution imagesetter.

The HalftoneHints Field

HalftoneHints
Tag =321(141H)
Type =SHORT

N =2

The purpose of the HalftoneHintsfield isto convey to the halftone function the
range of gray levelswithin a colorimetrically-specified image that should retain
tonal detail. Thefield containstwo values of sixteen bitseach and, therefore, is
contained wholly within thefield itself; no offset isrequired. Thefirst word speci-
fiesthe highlight gray level which should be halftoned at the lightest printabletint
of thefinal output device. The second word specifiesthe shadow gray level which
should be halftoned at the darkest printabletint of the final output device. Portions
of theimage which are whiter than the highlight gray level will quickly, if not
immediately, fade to specular highlights. Thereisno default value specified, since
the highlight and shadow gray levels are afunction of the subject matter of apar-
ticular image.

Appropriate values may be derived algorithmically or may be specified by the
user, either directly or indirectly.

The HalftoneHintsfield, as defined here, defines an achromatic function. It can be
used just as effectively with color images as with monochrome images. When
used with opponent color spaces such as CIE L*a*b* or Y CbCr, it refersto the
achromatic component only; L* inthe case of CIELab, and Y inthe case of

72

TIFF 6.0 Specification Final—June 3, 1992

Y CbCr. When used with tri-stimul us spaces such as RGB, it suggeststo retain
tonal detail for al colorswith an NTSC gray component within the bounds of the
R=G=B=Highlight to R=G=B=Shadow range.

Comments for TIFF Writers

TIFF writers are encouraged to include the HalftoneHintsfield in al color or
grayscaleimages where BitsPerSample >1. Although no default valueis speci-
fied, prior to theintroduction of thisfield it has been common practicetoimplic-
itly specify the highlight and shadow gray levelsas 1 and 2** BitsperSample-2
and manipulate theimage datato this definition. There are some disadvantagesto
thistechnique, and it isnot feasible for afixed gamut col orimetric image type.
Appropriate values may be derived algorithmically or may be specified by the
user directly or indirectly. Automatic algorithms exist for analyzing the histogram
of the achromatic intensity of an image and defining the minimum and maximum
values asthe highlight and shadow settings such that tonal detail isretained
throughout theimage. Thiskind of algorithm may try to impose ahighlight or
shadow where nonereally existsin theimage, which may require user controlsto
override the automatic setting.

It should be noted that the choice of the highlight and shadow valuesis somewhat
output dependent. For instance, in situationswhere the dynamic range of the
output medium isvery limited (asin newsprint and, to alesser degree, laser out-
put), it may be desirable for the user to clip some of thelightest or darkest tonesto
avoid the reduced contrast resulting from compressing the tone of the entireim-
age. Different settings might be chosen for 150-line halftone printed on coated
stock. Keep in mind that these values may be adjusted later (which might not be
possible unlesstheimageis stored as acolorimetric, fixed, full-gamut image), and
that more sophisticated page-layout applications may be capable of presenting a
user interface to consider these decisions at a point where the halftone processis
well understood.

It should be noted that although CCDs arelinear intensity detectors, TIFF writers
may choose to manipul ate theimage to store gamma-compensated data. Gamma:
compensated datais more efficient at encoding an imagethan islinear intensity
databecauseit requiresfewer BitsPerPixel to eliminate banding in the darker
tones. It also hasthe advantage of being closer to the tone response of the display
or printer and is, therefore, lesslikely to produce poor results from applications
that are not rigorous about their treatment of images. Be aware that the
Photometricl nterpretation value of 0 or 1 (grayscal€) implieslinear databecause
no gammais specified. The Photometriclnterpretation value of 2 (RGB data)
specifiesthe NTSC gammaof 2.2 asadefault. If dataiswritten as something
other than the default, then a GrayResponseCurvefield or a TransferFunction
field must be present to define the deviation. For grayscale data, be sure that the
densitiesin the GrayResponseCurve are consistent with the

Photometricl nterpretation field and the HalftoneHintsfield.

73

TIFF 6.0 Specification Final—June 3, 1992

Comments for TIFF Readers

TIFF readersthat send agrayscal e imageto a halftone output device, whether itis
abinary laser printer or a PostScript imagesetter should make an effort to maintain
the highlight and shadow placement. This requirestwo steps. First, determinethe
highlight and shadow gray level of aparticular image. Second, communicate that
information to the halftone engine.

To determine the highlight and shadow gray levels, begin by looking for a
HaftoneHintsfield. If it exists, it takes precedence. Thefirst word representsthe
gray level of the highlight and the second word representsthe gray level of the
shadow. If theimageisacolorimetricimage (i.e. it hasa GrayResponseCurve
field or a TransferFunction field) but does not contain aHalftoneHintsfield, then
the gamut mapping techni ques described earlier should be used to determine the
highlight and shadow values. If neither of these conditions aretrue, then thefile
should betreated asif aHalftoneHintsfield had indicated ahighlight at gray level
1 and ashadow at gray level 2**BitsPerPixel-2 (or vice-versadepending on the
Photometricl nterpretation field). Once the highlight and shadow gray levelshave
been determined, the next step isto communicate thisinformation to the halftone
module. The halftone module may exist within the same application asthe TIFF
reader, it may exist within aseparate printer driver, or it may exist withinthe
Raster Image Processor (RIP) of the printer itself. Whether the halftone processis
asimpledither pattern or ageneral purpose spot function, it hassomegray level at
which thelightest printabletint will be rendered. The HalftoneHint concept is best
implemented in an environment where thislightest printabletint iseasily and
consistently specified.

There are several waysin which an application can communicate the highlight
and shadow to the halftone function. Some environments may allow the applica-
tion to passthe highlight and shadow to the halftone modul e explicitly along with
theimage. Thisisthe best approach, but many environments do not yet provide
this capability. Other environments may provide fixed gray levelsat which the
highlight and shadow will be rendered. For these cases, the application should
build atone map that matches the highlight and shadow specified intheimageto
the highlight and shadow gray level of the halftone module. This approach re-
quires morework by the application software, but will provide excellent results.
Some environmentswill not have any consistent concept of highlight and shadow
at al. In these environments, the best an application can do is characterize each of
the supported printers and save the observed highlight and shadow gray levels.
The application can then use these valuesto achieve the desired results, providing
the environment doesn’t change.

Oncethe highlight and shadow areas are selected, care should be taken to appro-
priately map intermediate gray levelsto those expected by the halftone engine,
which may or may not be linear Reflectance. Note that although CCDs are linear
intensity detectors and many TIFF files are stored aslinear intensity, most output
devicesrequire significant tone compensation (sometimes called gamma correc-
tion) to correctly display or print linear data. Be aware that the

Photometricl nterpretation value of 0, 1 implieslinear databecause no gammais
specified. The Photometricl nterpretation value of 2 (RGB data) specifiesthe
NTSC gammaof 2.2 asadefault. If aGrayResponseCurvefield or a
TransferFunction field is present, it may define something other than the defaullt.

74

TIFF 6.0 Specification Final—June 3, 1992

Some Background on the Halftone Process

To obtain the best results when printing a continuous-tone raster image, it issel-
dom desirable to simply reproduce the tones of the original on the printed page.
Mosgt often there is some gamut mapping required. Often thisis because the tonal
range of the original extends beyond the tonal range of the output medium. In
some cases, the tone range of the original iswithin the gamut of the output me-
dium, but it may be more pleasing to expand the tone of theimageto fill the range
of the output. Given that thetone of the original isto be adjusted, thereisawhole
range of possibilitiesfor thelevel of sophistication that may be undertaken by a
software application.

Printing monochrome output isfar |ess sophi sticated than printing color outpuit.
For monochrome output thefirst priority isto control the placement of the high-
light and the shadow. Ideally, aquality halftone will have sufficient levels of gray
so that astandard observer cannot distinguish the interface between any two adja
cent levelsof gray. In practice, however, thereis often asignificant step between
thetone of the paper and the tone of the lightest printabletint. Although usually
less severe, the problem is similar between solid ink and the darkest printabletint.
Since the dynamic range between the lightest printabletint and the darkest print-
abletintisusually lessthan onewould like, it is common to maximize the tone of
theimage within these bounds. Not all imageswill have ahighlight (an areaof the
imagewhich isdesirableto print aslight as possible while still retaining tonal
detail). If one exists, it should be carefully controlled to print at the lightest print-
abletint of the output medium. Similarly, the darkest areas of theimageto retain
tonal detail should be printed asthe darkest printabletint of the output medium.
Toneslighter or darker than these may be clipped at the limits of the paper and
ink. Satisfactory results may be obtained in monochrome work by doing nothing
more than a perceptually-linear mapping of the image between these rigorously
controlled endpoints. Thislevel of sophistication is sufficient for many mid-range
applications, although the results often appear flatter (i.e. lower in contrast) than
desired.

The next stepisto increase contrast dightly in thetonal range of theimage that
contains the most important subject matter. To perform this step well requires
considerably moreinformation about theimage and about the press. To know
whereto add contrast, the algorithm must have accessto first the keyness of the
image; the tone range which the user considers most important. To know how
much contrast to add, the algorithm must have accessto the absol ute tone of the
origina and the dynamic range of the output device so that it may calculate the
amount of tone compression to which theimageisactually subjected.

Most images are called normal key. Theimportant subject areas of anormal key
image arein the midtones. Theseimages do well when a so-called “ sympathetic
curve” isapplied, which increasesthe contrast in midtones dightly at the expense
of contrast in the lighter and darker tones. White chinaon awhite tableclothisan
example of ahigh key image. High key images benefit from higher contrast in
lighter tones, with less contrast needed in the midtones and darker tones. Low key
images have important subject matter in the darker tones and benefit from increas-
ing the contrast in the darker tones. Specifying the keyness of animage might be
attempted by automatic techniques, but it will likely fail without user input. For
example, aphoto of abridein awhite wedding dressit may be ahigh key imageif

75

TIFF 6.0 Specification

Final—June 3, 1992

you are salling wedding dresses, but may beanormal key imageif you arethe
parents of the bride and are more interested in her smile.

Sophigticated color reproduction employsall of these principles, and then applies
them in three dimensions. The mapping of the highlight and shadow becomes
only onesmall, albeit critical, portion of thetotal issue of mapping colorsthat are
too saturated for the output medium. Here again, automatic techniques may be
employed asafirgt pass, with the user becoming involved in the clip or compress
mapping decision. The HalftoneHintsfield is still useful in communicating which
portions of theintensity of theimage must be retained and which may be clipped.
Again, asophisticated application may override these settingsif later user input is
received.

76

TIFF 6.0 Specification

Final—June 3, 1992

Section 18: Associated Alpha Handling

Introduction

Fields

This section describes a scheme for handling images with a pha data.

A common techniquein computer graphicsisto assemble an image from one or
more elementsthat are rendered separately. When elements are combined using
compositing techniques, matte or coverage information must be present for each
pixel to create aproperly anti-aliased accumulation of the full image [Porter84].
Thismatting information is an example of additional per-pixel datathat must be
maintained with an image. This section describes how to use the ExtraSamples
field to store the requisite matting information, commonly called the associated
alphaor just apha. This scheme enabl es efficient manipul ation of image data
during compositing operations.

Images with matting information are stored in their natural format but with an
additional component per pixel. The ExtraSamplefield isincluded with theimage
toindicate that an extracomponent of each pixel contains associated aphadata. In
addition, when associated alpha dataare included with RGB data, the RGB com-
ponents must be stored premultiplied by the associated a pha component and
component valuesin therange [0,2* * BitsPerSample-1] areimplicitly mapped
ontothe[0,1] interval. That is, for each pixel (r,g,b) and opacity A, wherer, g, b,
and A areintherange[0,1], (A*r,A*g,A*b,A) must be stored inthefile. If Ais
zero, then the color components should beinterpreted as zero. Storing datain this
pre-multiplied format, allows compositing operations to be implemented most
efficiently. In addition, storing pre-multiplied datamakesit possible to specify
colorswith components outside the normal [0,1] interval. Thelatter isuseful for
defining certain operationsthat effect only the luminescence [Porter84].

ExtraSamples
Tag =338(152.H)
Type =SHORT

N =1

Thisfield must have avalue of 1 (assodated alphadatawith pre-multiplied color
components). The associated a pha data stored in component SamplesPerPixel-1
of each pixel containsthe opacity of that pixd, and the aolor information is pre-

multiplied by dpha.

77

TIFF 6.0 Specification

Comments

Final—June 3, 1992

Associated alphadataisjust another component added to each pixel. Thus, for
example, itssizeisdefined by the value of the BitsPerSamplefield.

Notethat since datais stored with RGB components already multiplied by alpha,
naive applicationsthat want to display an RGBA image on adisplay can do so
simply by displaying the RGB component values. Thisworks becauseit is effec-
tively the same as merging the image with ablack background. That is, to merge
oneimage with another, the color of resultant pixelsare calculated as:

CI’ = COVEY * AOVEY + C * (1_A)

under over:
Sincethe“under image” isablack background, this equation reducesto
CI’ = COVEY * AOVEY
which isexactly the pre-multiplied color; i.e. what is stored in theimage.

On the other hand, to print an RGBA image, one must composite theimage over a
suitable background page color. For awhite background, thisis easily done by
adding 1 - A to each color component. For an arbitrary background color C
printed color of each pixel is

C = C + Cback * (1_A mage)

print image

he

back’ t

(since Cirege ispre-multiplied).

Sincethe ExtraSamplesfield isindependent of other fields, this scheme permits
alphainformation to be stored in whatever organization is appropriate. In particu-
lar, components can be stored packed (PlanarConfiguration=1); thisisimportant
for good /O performance and for good memory access performance on machines
that are senditive to datalocality. However, if this schemeisused, TIFF readers
must not derive the SamplesPerPixel from the value of the
Photometriclnterpretation field (e.g., if RGB, then SamplesPerPixdl is 3).

In addition to being independent of data storage-related fields, thefieldisalso
independent of the Photometricl nterpretation field. This means, for example, that
itiseasy to usethisfield to specify grayscal e data and associated matte informa-
tion. Note that a pal ette-col or image with associated a phawill not havethe
colormap indices pre-multiplied; rather, the RGB colormap valueswill be pre-
multiplied.

Unassociated Alpha and Transparency Masks

Some image manipul ation applications support notions of transparency masksand
soft-edge masks. The associated alphainformation described inthissectionis
different from this unassociated alpha information in many ways, most impor-
tantly:

» Associated a phadescribes opacity or coverage at each pixel, while clipping-
related al phainformation describes aboolean relationship. That is, associated
alphacan specify fractional coverage at apixel, while masks specify either O or
100 percent coverage.

» Oncedefined, associated a phaisnot intended to be removed or edited, except
asaresult of compositing theimage; itisanintegral part of animage.

78

TIFF 6.0 Specification Final—June 3, 1992

Unassociated alpha, on the other hand, is designed as an ancillary piece of
information.

References

[Porter84] “ Compositing Digital Images’. Thomas Porter, Tom Duff; Lucasfilm
Ltd. ACM SIGGRAPH Proceedings Volume 18, Number 3. July, 1984.

79

TIFF 6.0 Specification

Final—June 3, 1992

Section 19: Data Sample Format

Fields

This section describes a scheme for specifying data sample typeinformation.

TIFFimplicitly typesall data samples as unsigned integer values. Certain applica
tions, however, require the ability to storeimage-related datain other formats
such asfloating point. This section presents ascheme for describing avariety of
datasampleformats.

SampleFormat
Tag =339(153.H)
Type =SHORT

N = SamplesPerPixel

Thisfield specifieshow to interpret each datasamplein apixel. Possible values
are:

unsigned integer data

two’' scomplement signed integer data
| EEE floating point data[|EEE]
undefined dataformat

Notethat the SampleFormat field does not specify the size of datasamples; thisis
till done by the BitsPerSamplefield.

A field value of “undefined” isastatement by the writer that it did not know how
tointerpret the data samples; for example, if it were copying an existing image. A
reader would typically treat an image with “undefined” dataasif thefield were
not present (i.e. asunsigned integer data).

Default is 1, unsigned integer data.

SMinSampleValue

Tag =340(154.H)

Type =thefieldtypethat best matchesthe sample data
N = SamplesPerPixel

Thisfield specifies the minimum sample value. Note that avalue should be given
for each datasample. That is, if theimage has 3 SamplesPerPixel, 3 values must
be specified.

The default for SMinSampleV alue and SMaxSampleVaueisthe full range of the
datatype.

80

TIFF 6.0 Specification

Comments

References

Final—June 3, 1992

SMaxSampleValue

Tag =341(155H)

Type =thefieldtypethat best matchesthe sample data
N = SamplesPerPixel

Thisnew field specifies the maximum sampleva ue.

The SampleFormat field allows more genera imaging (such asimage processing)
applicationsto employ TIFF asavalid fileformat.

SMinSampleV alue and SMaxSampl eV alue become more meaningful whenim-
age dataistyped. The presence of thesefieldsmakesit possiblefor readersto
assumethat data samples are bound to the range [SMinSampleValue,
SMaxSampleVa ue] without scanning theimage data.

[IEEE] “IEEE Standard 754 for Binary Floating-point Arithmetic”.

81

TIFF 6.0 Specification

Final—June 3, 1992

Section 20: RGB Image Colorimetry

Introduction

Without additional information, RGB datais device-specific; that is, without an
absolute color meaning. This section describes aschemefor describing and char-
acterizing RGB image data.

Color printers, displays, and scanners continue to improvein quality and avail-
ability whilethey drop in price. Now the problem isto display color images so
that they appear to beidentical on different hardware.

The key to reproducing the same color on different devicesisto usethe CIE 1931
XY Z color-matching functions, the international standard for color comparison.
Using CIE XY Z, animage' s colorimetry information can fully describeits color

interpretation. The approach taken hereisessentially calibrated RGB. Itimpliesa
transformation from the RGB color space of the pixelsto CIE 1931 XY Z.

The appearance of acolor depends not only on its absol ute tristimulus val ues, but
also on the conditions under which it isviewed, including the nature of the sur-
round and the adaptation state of the viewer. Colors having the same absolute
tristimulus values appear the samein identical viewing conditions. Themore
complex issue of color appearance under different viewing conditionsis ad-
dressed by [4]. The colorimetry information presented here plays an important
rolein color appearance under different viewing conditions.

Assuming identical viewing conditions, an application using the tags described
bel ow can display an image on different hardware and achieve colorimetrically
identical results. The process of using this colorimetry information for displaying
animageis straightforward on a color monitor but it ismore complex for color
printers. Also, theresultswill belimited by the color gamut and other characteris-
ticsof the display or printing device.

Thefollowing fields describe the image col orimetry information of a TIFF image:
WhitePoint chromaticity of thewhite point of theimage
PrimaryChromaticities chromaticities of the primaries of theimage

Transfer Function transfer function for the pixel data

TransferRange extendstherange of thetransfer function

ReferenceBlackWhite pixel component headroom and footroom parameters

The TransferFunction, TransferRange, and ReferenceBlackWhite fields have
defaults based on industry standards. Animage hasacolorimetricinterpretation if
and only if both the WhitePoint and PrimaryChromaticitiesfields are present. An
image without these colorimetry fieldswill be displayed in an application and
hardware dependent manner.

Note: Inthefollowing definitions, BitsPerSampleisused asif it wereasingle
number wheninfactitisan array of SamplesPerPixel numbers. The elements of

82

TIFF 6.0 Specification

Final—June 3, 1992

thisarray may not always be equal, for example: 5/6/5 16-bit pixels.
BitsPerSample should be interpreted as the BitsPerSample val ue associated with a
particular component. In the case of unegqual BitsPerSample values, the defini-
tions bel ow can be extended in astraightforward manner.

This section hasthefollowing differenceswith Appendix H in TIFF 5.0:

» removed the use of image colorimetry defaults

* renamed the ColorResponseCurvesfield as TransferFunction

» optionaly allowed asingle TransferFunction table to describe all three chan-
nels

* described the use of the TransferFunction field for Y CbCr, Palette,
WhitelsZero and BlacklsZero Photometriclnterpretation types

 added the TransferRange tag to expand the range of the TransferFunction
below black and above white

* added the ReferenceBlackWhitefield
* addressed theissue of color appearance

Colorimetry Field Definitions

WhitePoint
Tag =318(13E.H)
Type =RATIONAL
N =2

The chromaticity of the white point of theimage. Thisisthe chromaticity when
each of the primaries hasits ReferenceWhite value. The valueisdescribed using
the 1931 CIE xy chromaticity diagram and only the chromaticity is specified.
Thisvalue can correspond to the chromaticity of the alignment white of amonitor,
thefilter set and light source combination of ascanner or theimaging model of a
rendering package. The orderingiswhite[x], white[y].

For example, the CIE Standard Illuminant D65 used by CCIR Recommendation
709 and Kodak PhotoY CCis:

3127/10000,3290/10000

No default.

PrimaryChromaticities
Tag =319 (13F.H)

Type =RATIONAL

N =6

83

TIFF 6.0 Specification

Final—June 3, 1992

The chromaticities of the primaries of theimage. Thisisthe chromaticity for each
of the primarieswhen it hasits ReferenceWhite value and the other primaries
have their ReferenceBlack values. Thesevaluesare described using the 1931 CIE
xy chromaticity diagram and only the chromaticities are specified. Thesevalues
can correspond to the chromaticities of the phosphors of amonitor, thefilter set
and light source combination of ascanner or theimaging model of arendering
package. Theorderingisred[x], red[y], green[x], green[y], bluelx], and blugy].

For example the CCIR Recommendation 709 primariesare:
640/1000,330/1000,
300/12000, 600/1000,
150/1000, 60/1000

No default.

TransferFunction

Tag =301(12D.H)

Type =SHORT

N ={1or 3} * (1 << BitsPerSample)

Describesatransfer function for theimagein tabular style. Pixel componentscan
be gamma-compensated, companded, non-uniformly quantized, or coded in some
other way. The TransferFunction mapsthe pixel components from anon-linear
BitsPerSample (e.g. 8-bit) forminto a 16-bit linear form without a perceptibleloss
of accuracy.

If N =1 << BitsPerSample, thetransfer function isthe samefor each channel and
all channelsshareasingletable. Of course, thisassumesthat each channel hasthe
same BitsPerSamplevalue.

If N =3* (1 << BitsPerSample), there are three tables, and the ordering isthe
sameasitisfor pixel components of the Photometriclnterpretation field. These
tables are separate and not interleaved. For example, with RGB imagesall red
entriescomefirst, followed by al green entries, followed by al blue entries.

Thelength of each component tableis 1 << BitsPerSample. Thewidth of each
entry is 16 bitsasimplied by thetype SHORT. Normally the value O represents
the minimum intensity and 65535 represents the maximum intensity and the val-
ues|[0, 0, 0] represent black and [65535,65535, 65535] represent white. If the
TransferRangetag is present then it is used to determine the minimum and maxi-
mum values, and ascaling normalization.

The TransferFunction can be applied to images with a Photometricl nterpretation
value of RGB, Palette, Y CbCr, WhitelsZero, and BlacklsZero. The
TransferFunction is not used with other Photometricl nterpretation types.

For RGB Photometriclnterpretation, ReferenceBlackWhite expands the coding
range, TransferRange expandsthe range of the TransferFunction, and the
TransferFunction tables decompand the RGB value. The WhitePoint and
PrimaryChromaticities further describethe RGB colorimetry.

84

TIFF 6.0 Specification

Final—June 3, 1992

For Palette col or Photometriclnterpretation, the Colormap maps the pixel into
three 16-bit valuesthat when scaled to BitsPerSample-bits serve asindicesinto
the TransferFunction tables which decompand the RGB value. The WhitePoint
and PrimaryChromaticitiesfurther describe the underlying RGB colorimetry.

A Palette value can be scaled into a TransferFunction index by:
index= (value* ((1 << BitsPerSample) - 1)) / 65535;

A TransferFunction index can be scaled into a Palette color value by:
vaue= (index * 65535L) / ((1 << BitsPerSample) - 1);

Be careful if you intend to create Paletteimages with a TransferFunction. If the
Colormap tag isdirectly converted from ahardware colormap, it may have a
device gammaalready incorporated into the DAC values.

For Y CbCr Photometricl nterpretation, ReferenceBlackWhite expands the coding
range, the Y CbCrCoefficients describe the decoding matrix to transform Y CbCr
into RGB, TransferRange expands the range of the TransferFunction, and the
TransferFunction tables decompand the RGB value. The WhitePoint and
PrimaryChromaticities fields provide further description of the underlying RGB
colorimetry.

After coding range expansion by ReferenceBlackWhite and TransferFunction
expansion by TransferRange, RGB values may be outside the domain of the
TransferFunction. Also, the display device matrix can transform RGB valuesinto
display device RGB values outside the domain of thedevice. Thesevauesare
handled in an application-dependent manner.

For RGB images with non-default ReferenceBlackWhite coding range expansion
and for Y CbCr images, the resol ution of the TransferFunction may be insuffi-
cient. For example, after the Y CbCr transformation matrix, the decoded RGB
values must be rounded to index into the TransferFunction tables. Applications
needing the extraaccuracy should interpol ate between the el ements of the
TransferFunction tables. Linear interpolation is recommended.

For Whitel sZero and BlacklsZero Photometriclnterpretation, the
TransferFunction decompandsthe grayscal e pixel valueto alinear 16-bit form.
Notethat a TransferFunction value of O represents black and 65535 represents
white regardless of whether agrayscaleimageisWhitelsZero or BlacklsZero.
For example, the zeroth element of aWhitel sZero TransferFunction table will
likely be 65535. Thisextension of the TransferFunction field for grayscaleim-
agesisintended to replace the GrayResponseCurvefield.

The TransferFunction does not describe atransfer characteristic outside of the
range for ReferenceBlackWhite.

Default isasingletable corresponding to the NTSC standard gammavalue of 2.2.
Thistableisused for each channel. It can be generated by:
NVal ues = 1 << BitsPerSanpl e;
for (TF[O]=0, i =1; i < Nvalues; i++)
TF[i]= floor(pow(i / (Nvalues - 1.0), 2.2) * 65535 + 0.5);

85

TIFF 6.0 Specification

Final—June 3, 1992

TransferRange
Tag =342(156.H)
Type =SHORT

N =6

Expandsthe range of the TransferFunction. Thefirst valuewithin apair isassoci-
ated with TransferBlack and the second is associated with TransferWhite. The
ordering of pairsisthe same asfor pixel components of the

Photometricl nterpretation type. By default, theTransferFunction isdefined over a
range from aminimum intensity, O or nominal black, to amaximum intensity,(1
<< BitsPerSample) - 1 or nominal white. Kodak PhotoY CC uses an extended
range TransferFunction in order to describe highlights, saturated colorsand
shadow detail beyond thisrange. The TransferRange expandsthe
TransferFunction to support these values. It isdefined only for RGB and Y CbCr
Photometricl nterpretations.

After ReferenceBlackWhite and/or Y CbCr decoding hastaken place, an RGB
value can berepresented asareal number. It isthen rounded to create an index
into the TransferFunctiontable. 1nthe absence of a TransferRangetag, or if the
tag hasthe default values, the rounded valueis an index and the normalized inten-
sty valueis:
index = (int) (value + (value < 0.0? -0.5 : 0.5));
intensity = TF[index] / 65535;
If the TransferRangetag is present and has non-default values, it providesan
offset to be used with the rounded index. 1t also describesascaling. The normal-
ized intensity valueis:
index = (int) (value + (value < 0.0? -0.5 : 0.5));
intensity =(TF[index + TransferRange[Bl ack]] -
TF[Transf er Range[Bl ack]])
| (TF[TransferRange[White]] - TF[TransferRange[Bl ack]]);

An application can write a TransferFunction with anon-defaultTransferRange as
follows:
bl ack_offset = scale_factor * Transfer(-TransferRange[Bl ack] ar
(TransferRange[Wite] - TransferRange[Black]));
for (i =0; i < (1 << BitsPerSanple); i++)
TF[i] = floor(0.5 - black_offset + scale factor
* Transfer((i - TransferRange[Bl ack])
| (TransferRange[Wite] - TransferRange[Black])));

The TIFF writer chooses scale factor such that the TransferFunction fitsinto a
16-bit unsigned short, and chooses the TransferRange so that the most important
part of the TransferFunction fitsinto the table.

Defaultis[0, NV, 0, NV, 0, NV] where NV = (1 <<BitsPerSample) - 1.

ReferenceBlackWhite
Tag =532 (214.H)

Type =RATIONAL

N =6

86

TIFF 6.0 Specification

Final—June 3, 1992

Specifiesapair of headroom and footroom image data val ues (codes) for each
pixel component. Thefirst component codewithin apair isassociated with
ReferenceBlack, and the second is associated with ReferenceWhite. The ordering
of pairsisthe same asthose for pixel components of the Photometriclnterpretation
type. ReferenceBlackWhite can be applied to imageswith a

Photometricl nterpretation value of RGB or Y ChCr. ReferenceBlackWhiteisnot
used with other Photometriclnterpretation val ues.

Computer graphics commonly places black and white at the extremities of the
binary representation of image data; for example, black at code 0 and white at
code 255. In other disciplines, such as printing, film, and video, there are practical
reasonsto provide footroom codes below ReferenceBlack and headroom codes
above ReferenceWhite.

Infilm applications, they correspond to the densities Dmax and Dmin. Invideo
applications, ReferenceBlack correspondsto 7.5 IRE and O IRE in systemswith
and without setup respectively, and ReferenceWhite correspondsto 100 IRE
units.

Using Y CbCr (See Section 21) and the CCIR Recommendation 601.1 video stan-
dard as an example, code 16 represents ReferenceBlack, and code 235 represents
ReferenceWhite for the luminance component (Y). For the chrominance compo-
nents, Cb and Cr, code 128 represents ReferenceBlack, and code 240 represents
ReferenceWhite. With Cb and Cr, the ReferenceWhite valueis used to code
reference blue and reference red respectively.

Thefull range component valueis converted from the code by:
Ful | RangeVal ue = (code - ReferenceBl ack) * Codi ngRange
| (ReferenceWite - ReferenceBl ack);

The codeis converted from the full-range component value by:
code = (FullRangeValue * (ReferenceWite - ReferenceBl ack)
| Codi ngRange) + ReferenceBl ack;

For RGB imagesand the Y component of Y CbCr images, CodingRangeisde-
fined as:

Codi ngRange = 2 ** BitsPerSanple - 1,

For the Cb and Cr components of Y CbCr images, CodingRangeis defined as:
Codi ngRange = 127;

For RGB images, in the default special case of no headroom or footroom, this
conversion can be skipped because the scaling multiplier equals 1.0 and the value
equalsthe code.

For Y CbCr images, in the case of no headroom or footroom, the conversionfor Y
can be skipped because the value equalsthe code. For Cb and Cr, ReferenceBlack
must still be subtracted from the code. Inthe general case, the scaling multiplica-
tion for the Cb and Cr component codes can be factored into the Y CbCr transform
meatrix.

Useful ReferenceBlackWhite valuesfor Y CbCr images are:
[0/1, 255/1,128/1, 255/1, 128/1, 255/1]

no headroom/footroom
[15/1, 235/1, 128/1, 240/1, 128/1, 240/1]
CCIR Recommendation 601.1 headroom/footroom

87

TIFF 6.0 Specification

Final—June 3, 1992

Useful ReferenceBlackWhite valuesfor BitsPerSample = 8,8,8 Class R images
are:

[0/1, 255/1,0/1, 255/1, 0/1, 255/1]
no headroom/footroom
[16/1, 235/1, 16/1, 235/1, 16/1, 235/1]
CCIR Recommendation 601.1 headroom/footroom
Defaultis[0/,NV/1, 0/1, NV/1, 0/1, NV/1] where NV =2 ** BitsPerSample- 1.

References

[1] TheReproduction of Colour in Photography, Printing and Television, R.
W. G. Hunt, Fountain Press, Tolworth, England,1987.

[2] Principlesof Color Technology, Billmeyer and Saltzman, Wiley-
Interscience, New Y ork, 1981.

[3] Colorimetric Propertiesof Video Displays, William Cowan, University of
Waterloo, Waterloo, Canada, 1989.

[4] TIFF Color Appearance Guiddines, Dave Farber, Eastman Kodak Com-
pany, Rochester, New Y ork.

88

TIFF 6.0 Specification

Final—June 3, 1992

Section 21: YC C Images

Introduction

Digitizers of video sourcesthat create RGB data are becoming more capable and
lessexpensive. The RGB color spaceis adequate for this purpose. However, for
both digital video and image compression applicationsacolor difference color
spaceis needed. Thetelevisionindustry dependson 'Y C C for digital video. For
image compression, subsampling the chrominance components allowsfor greater
compression. TIFF Y C, C (which we shall call ClassY) supports theseimages and
applications.

ClassY isbased on CCIR Recommendation 601-1, “ Encoding Parameters of
Digital Television for Studios.” ClassY aso has parametersthat allow the de-
scription of related standards such as CCIR Recommendation 709 and technol ogi-
cal variations such as component-sample positioning.

Y C,C. isadistinct Photometriclnterpretation type. RGB pixels are converted to
and fromYC C for storage and display.

ClassY definesthefollowing fields:
Y C,C Coefficients transformation fromRGB to YC.C,
YC,CSubSampling subsampling of the chrominance components

Y C,C Positioning positioning of chrominance component samplesrelative
to the luminance samples

In addition, ReferenceBlackWhite, which specifies coding range expansion, is
required by Class Y. See Section 20.

ClassY Y C,C. images have three components: Y, the luminance component, and
C, and C, two chrominance components. Class Y usestheinternational standard
notation Y C,C, for color-difference component coding. Thisis oftenincorrectly
caled YUV, which properly applies only to composite coding.

Thetransformations between Y C, C and RGB arelinear transformations of
uninterpreted RGB sample data, typically gamma-corrected values. The
Y C,C Coefficientsfield describes the parameters of this transformation.

Another feature of Class'Y comes from subsampling the chrominance compo-
nents. A Class'Y image can be compressed by reducing the spatial resolution of
chrominance components. Thistakes advantage of the relative insengitivity of the
human visual systemto chrominance detail. The Y C C SubSampling field de-
scribesthe degree of subsampling which hastaken place.

WhenaClassY imageis subsampled, each C, and C sampleisassociated witha
group of luminance samples. The'Y C,C Positioning field describes the position of
the chrominance component samplesrel ative to the group of luminance samples:
centered or cosited.

ClassY requiresuse of the ReferenceBlackWhite field. Thisfield expandsthe
coding range by describing the reference black and white valuesfor the different
componentsthat allow headroom and footroom for digital video images. Sincethe

89

TIFF 6.0 Specification

Final—June 3, 1992

default for ReferenceBlackWhiteisinappropriatefor Class'Y, it must be used
explicitly.

At first, it might seem that the information conveyed by ClassY and the RGB
Colorimetry section isredundant. However, decoding Y C, C to RGB primaries
requiresthe YC C, fields, and interpretation of the resulting RGB primariesre-
quiresthe colorimetry and transfer function information. Seethe RGB Colorim-

etry section for details.

Extensions to Existing Fields

ClassY images use adistinct Photometricl nterpretation Field value:

Photometricinterpretation

Tag =262(106.H)

Type =SHORT

N =1

ThisField indicatesthe color space of theimage. Thenew valueis:
YC.C

A vaueof 6indicatesthat theimage dataisinthe Y C C color space. TIFF uses
theinternational standard notation Y C,C, for color-difference samplecoding. Y is
the luminance component. C, and C, are the two chrominance components. RGB

pixelsare converted to and from Y C,C, form for storage and display.

Fields Defined in Class Y

YC,C Coefficients
Tag =529(211H)
Type =RATIONAL

N =3

Thetransformation from RGB to Y C,C image data. The transformation is speci-
fied asthreerational valuesthat represent the coefficients used to compute lumi-
nance, Y.

Thethreerationa coefficient values, LumaRed, LumaGreen and LumaBlue, are
the proportions of red, green, and blue respectively inluminance, Y.

Y, C,,and C. may be computed from RGB using the luminance coefficients
specified by thisfield asfollows:

Y = (LumaRed* R+LumaGreen* G+ LumaBlue* B)
C,= (B-Y)/(2-2* LumaBlue)

90

TIFF 6.0 Specification

Final—June 3, 1992

C =(R-Y)/(2-2* LumaRed)

R, G, and B may be computed from Y C C asfollows:

R = C*(2-2* LumaRed) +Y

G = (Y -LumaBlue* B - LumaRed* R)/ LumaGreen
B = C*(2-2* LumaBlue) +Y

In disciplines such as printing, film, and video, there are practical reasonsto pro-
vide footroom codes bel ow the ReferenceBlack code and headroom codes above
ReferenceWhite code. In such cases the values of the transformation matrix used
to convert from Y C, C, to RGB must be multiplied by ascalefactor to produce
full-range RGB va ues. These scale factors depend on the reference ranges speci-
fied by the ReferenceBlackWhitefield. See the ReferenceBlackWhite and
TransferFunction fieldsfor more details.

The values coded by thisfield will typically reflect the transformation specified
by astandard for Y C,C encoding. The following table contains examples of com-
monly used values.

Standard LumaRed LumaGreen LumaBlue
CCIR Recommendation 601-1 299/ 1000 587 /1000 114/ 1000
CCIR Recommendation 709 2125/10000 7154 /10000 721/ 10000

The default valuesfor thisfield are those defined by CCIR Recommendation 601-
1: 299/1000, 587/1000 and 114/1000, for LumaRed, LumaGreen and LumaBlue,

respectively.

YC,C SubSampling
Tag =530(212.H)

Type =SHORT

N =2

Specifiesthe subsampling factors used for the chrominance components of a
Y C,C.image. Thetwo fields of thisfield, YC C SubsampleHorizand
YC,C SubsampleVert, specify the horizontal and vertical subsampling factors

respectively.
Thetwo fields of thisfield are defined asfollows:
Short 0: YC,C SubsampleHoriz

ImageWidth of thischromaimageisequal to the Imagewidth of the associated
lumaimage.

ImageWidth of thischromaimageis half the ImageWidth of the associated luma
image.

ImageWidth of thischromaimageis one-quarter the ImageWidth of the associ-
ated lumaimage.

Short 1. YC,C SubsampleVert:

Imagelength (height) of thischromaimageisequal to the Imagelength of the
associated lumaimage.

91

TIFF 6.0 Specification

Final—June 3, 1992

Imagel_ength (height) of this chromaimageishalf the Imagel ength of the associ-
ated lumaimage.

Imagelength (height) of this chromaimage is one-quarter the Imagelength of the
associated lumaimage.

Both C, and C, have the same subsampling ratio. Also, YC C SubsampleVert shall
awaysbelessthan or equal to YC, C SubsampleHoriz

ImageWidth and Imagel ength are constrained to be integer multiples of

YC,C SubsampleHorizand YC C SubsampleVert respectively. TileWidth and
TileL ength have the same constraints. RowsPerStrip must be an integer multiple
of YC,C SubsampleVert.

Thedefault values of thisfield are[2, 2].

YC,C Positioning
Tag =531(213H)
Type =SHORT

N =1

Specifiesthe positioning of subsampled chrominance componentsrelativeto
[uminance samples.

Specification of the spatial positioning of pixel samplesrelativeto the other
samplesisnecessary for proper image post processing and accurate image presen-
tation. In Class Y files, the position of the subsampled chrominance components
are defined with respect to the luminance component. Because components must
be sampled orthogonally (along rows and columns), the spatial position of the
samplesin agiven subsampled component may be determined by specifying the
horizontal and vertical offsets of thefirst sample (i.e. the samplein the upper-left
corner) with respect to the luminance component. The horizontal and vertical
offsets of thefirst chrominance sample are denoted X offset[0,0] and Y offset[0,0]
respectively. Xoffset[0,0] and Y offset[0,0] are defined in terms of the number of
samplesin the luminance component.

Thevauesfor thisfield are defined asfollows:

Tagvalue YCpCr Positioning X and Y offsets of first chrominance sample

1 centered Xoffset[0,0] = ChromaSubsampleHoriz /2- 0.5
Y offset[0,0] = ChromaSubsampleVert /2 - 0.5

2 cosited Xoffset[0,0] =0
Y offset[0,0] =0

Field value 1 (centered) must be specified for compatibility with industry stan-
dards such as PostScript Level 2 and QuickTime. Field value 2 (cosited) must be
specified for compatibility with most digital video standards, such as CCIR Rec-
ommendation 601-1.

Asan example, for ChromaSubsampleHoriz = 4 and ChromaSubsampleVert =2,
the centers of the samples are positioned asillustrated below:

92

TIFF 6.0 Specification

Final—June 3, 1992

Y C,C Postioning=1 Y C,C Positioning =2
X X X X X) X X X
X X X X X X X X
X X X X X) X X X
X X X X X X X X
X Luminance samples
Q Chrominance samples

Proper subsampling of the chrominance componentsincorporates an anti-aliasing
filter that reducesthe spectral bandwidth of thefull-resolution samples. Thetype
of filter used for subsampling determinesthe value of the Y C,C Positioning field.

For Y C,C Positioning = 1 (centered), subsampling of the chrominance compo-
nents can easily be accomplished using asymmetrical digital filter with an even
number of taps (coefficients). A commonly used filter for 2:1 subsampling utilizes
two taps (1/2,1/2).

For Y C,C Positioning = 2 (cosited), subsampling of the chrominance components
can easily be accomplished using asymmetrical digital filter with an odd number
of taps. A commonly used filter for 2:1 subsampling utilizes three taps (1/4,1/2,1/4).

Thedefault value of thisfieldis 1.

Ordering of Component Samples

This section defines the ordering convention used for Y, C,, and C, component
sampleswhen the PlanarConfiguration field value = 1 (interleaving). For
PlanarConfiguration = 2, component samples are stored as 3 separate planes, and
the ordering isthe same asthat used for other Photometricl nterpretation field
values.

For PlanarConfiguration = 1, the component sample order is based on the subsam-
pling factors, ChromaSubsampleHoriz and ChromaSubsampl eVert, defined by
the'Y C,C SubSampling field. Theimage datawithinaTIFF fileis comprised of
oneor more“ dataunits’, where adata unit is defined to be a sequence of samples:

» oneormoreY samples
+ aC sample
+ aCsample

TheY sampleswithin adataunit are specified asatwo-dimensiona array having
ChromaSubsampleVert rows of ChromaSubsampleHoriz samples.

93

TIFF 6.0 Specification

Final—June 3, 1992

Expanding on the examplein the previous section, consider aY C,C, image having

ChromaSubsampleHoriz = 4 and ChromaSubsampleVert = 2:

Y component

Y00

Yo1

Y02

Cb component

Yo3|Yo4|Y05 Cb00

Y10

Y11

Y12

Y13

For PlanarConfiguration = 1, the sample order is:

Yo Y

Y oYY YO, Y, ¥

01’ " 02" 03 " 10' 11’ 120 " 13’

Minimum Requirements for YCbCr Images

Cby, Cryy Y

Cr component

Cr00

Yoo

04’

In addition to satisfying the general Baseline TIFF requirements, aY CbCr file
must have the following characteritics:

» SamplesPerPixel = 3. SHORT. Three componentsrepresenting Y, Cb and Cr.
* BitsPerSample=8,8,8. SHORT.

» Compression=none (1), LZW (5) or JPEG (6). SHORT.

* Photometricinterpretation =Y C C (6). SHORT.

» ReferenceBlackWhite=6 RATIONALS. Specify the reference valuesfor
black and white.

If the conversion from RGB is not according to CCIR Recommendation 601-1,
code Y C,C Coefficients.

94

TIFF 6.0 Specification

Final—June 3, 1992

Section 22: JPEG Compression

Introduction

Image compression reduces the storage requirements of pictorial data. In addition,
it reduces the time required for access to, communication with, and display of
images. To address the standardization of compression techniques an international
standards group was formed: the Joint Photographic Experts Group (JPEG). JPEG
hasasits objectiveto createajoint ISO/CCITT standard for continuoustone
image compression (color and grayscale).

JPEG decided that because of the broad scope of the standard, no one algorithmic
procedure was able to satisfy the requirements of al applications. It was decided
to specify different algorithmic processes, where each processistargeted to sat-
isfy the requirements of aclass of applications. Thus, the JPEG standard became a
“toolkit” whereby the particular algorithmic “tools’ are sel ected according to the
needs of the application environment.

The agorithmic processesfall into two classes: lossy and lossless. Those based on
the Discrete Cosine Transform (DCT) arelossy and typically provide for substan-
tial compression without significant degradation of the reconstructed image with
respect to the sourceimage.

The simplest DCT-based coding processisthe basgline process. It providesa
capability that is sufficient for most applications. There are additional DCT-based
processesthat extend the baseline processto a broader range of applications.

The second class of coding processesistargeted for those applications requiring
lossless compression. Thelossless processes are not DCT-based and are utilized
independently of any of the DCT-based processes.

This Section describes the JPEG baseline, the JPEG lossless processes, and the
extensionsto TIFF defined to support JPEG compression.

JPEG Baseline Process

The baseline processisa DCT-based algorithm that compressesimages having 8
bits per component. The baseline process operates only in sequential mode. In
sequential mode, theimageis processed from left to right and top to bottomina
single pass by compressing thefirst row of data, followed by the second row, and
continuing until the end of imageisreached. Sequential operation hasminimal
buffering requirements and thus permitsinexpensive implementations.

The JPEG baseline processis an algorithm which inherently introduces error into
the reconstructed image and cannot be utilized for lossless compression. The
algorithm accepts asinput only those images having 8 bits per component. Images
with fewer than 8 bits per component may be compressed using the basdline pro-
cess algorithm by left justifying each input component within abyte before com-
pression.

95

TIFF 6.0 Specification

Final—June 3, 1992

Input Picture Output Picture
| |
Forward Transform Inverse Transform
8x82-D DCT 8x82-D IDCT
4
Y
Uniform Quantization Inverse Quantization
Up to 4 Quant. Tables Receives 4 Tables
Y
1-D DC Prediction 1-D DC Prediction
A
Y
Entropy Coding Entropy Decoding
2DC and AC Tables Receives 2+2 Tables
[

Figure 1. Baseline Process Encoder and Decoder

A functional block diagram of the Baseline encoding and decoding processesis
contained in Figure 1. Encoder operation consists of dividing each component of
theinput image into 8x8 blocks, performing the two-dimensional DCT on each
block, quantizing each DCT coefficient uniformly, subtracting the quantized DC
coefficient from the corresponding term in the previous block, and then entropy
coding the quantized coefficients using variable length codes (VL Cs). Decoding
isperformed by inverting each of the encoder operationsin the reverse order.

The DCT

Before performing thefoward DCT, input pixels are level-shifted so that they
rangefrom -128to +127. Blocks of 8x8 pixels are transformed with the two-
dimensional 8x8 DCT:

F(uv) = % C(u)C(v) 3> f(xy) cos T[(Z)fgl)u cosn(zi-gl)v

and blocks areinverse transformed by the decoder with the Inverse DCT:

with u,v,xy=0,1,2,...7

where X,y = spatial coordinatesin the pel domain
u, v = coordinatesin the transform domain

1
C(u), C(v) = ﬁ for uv=0

1 otherwise

96

TIFF 6.0 Specification

Final—June 3, 1992

Although the exact method for computation of the DCT and IDCT isnot subject
to standardization and will not be specified by JPEG, it is probable that JPEG will
adopt DCT-conformance specifications that designate the accuracy to which the
DCT must be computed. The DCT-conformance specificationswill assure that
any two JPEG implementationswill produce visually-similar reconstructed im-

ages.

Quantization

The coefficients of the DCT are quantized to reduce their magnitude and increase
the number of zero-value coefficients. The DCT coefficients are independently
quantized by uniform quantizers. A uniform quantizer dividestherea number
lineinto steps of equal size, asshown in Figure 2. The quantization step-size
applied to each coefficient is determined from the contents of a 64-element quan-
tization table.

C (uv)
3— ° O
21 e—oO
11 e—0o
| | | | | |
T T T T T T F(uv)
3Q -2Q -1Q 1Q 2Q 3Q
o—e -1
o—e -2
o—e L3

Figure2. Uniform Quantization

The baseline process providesfor up to 4 different quantization tablesto be de-
fined and assigned to separate interleaved components within asingle scan of the
input image. Although the values of each quantization table should idedlly be
determined through rigorous subjective testing which estimates the human
psycho-visual thresholdsfor each DCT coefficient and for each color component
of theinput image, JPEG has devel oped quantization tables which work well for
CCIR 601 resolution images and has published thesein the informational section
of the proposed standard.

DC Prediction

The DCT coefficient located in the upper-left corner of the transformed block
represents the average spatial intensity of the block and isreferred to asthe“DC
coefficient”. After the DCT coefficients are quantized, but before they are entropy
coded, DC predictionis performed. DC prediction smply meansthat the DC term
of the previous block is subtracted from the DC term of the current block prior to
encoding.

97

TIFF 6.0 Specification

Final—June 3, 1992

Zig-Zag Scan

Prior to entropy coding, the DCT coefficients are ordered into aone-dimensional
sequence according to a“ zig-zag” scan. The DC coefficient is coded first, fol-
lowed by AC coefficient coding, proceeding in the order illustrated in Figure 3.

VeV

V

4
AN AN AL S A

PN NN NN N

Figure 3. Zig-Zag Scan of DCT Coefficients

Entropy Coding

The quantized DCT coefficients are further compressed using entropy coding.
The baseline process performs entropy coding using variable length codes (VLCs)
and variablelength integers (VLISs).

VL Cs, commonly known as Huffman codes, compress data symbols by creating
shorter codesto represent frequently-occurring symbols and longer codesfor
occasionally-occurring symbols. Onereason for using VL Csisthat they are easily
implemented by means of lookup tables.

Separate codetables are provided for the coding of DC and AC coefficients. The
following paragraphs describe the respective coding methods used for coding DC
and AC coefficients.

DC Coefficient Coding

DC prediction produces a*“differential DC coefficient” that istypically small in
magnitude due to the high correlation of neighboring DC coefficients. Each dif-
ferential DC coefficient isencoded by aV L C which represents the number of
significant bitsin the DC term followed by aVLI representing the valueitself.
TheVLC iscoded by first determining the number of significant bits, SSSS, inthe
differential DC coefficient through the following table:

SSSS Differential DC Value

0
-1,1
-3-2,2,3
-1.-4,4.7
-15..-8,8..15
-31..-16, 16..31

g~ WO NP O

98

TIFF 6.0 Specification

Final—June 3, 1992

6 -63..-32,32..63

7 -127..-64, 64..127

8 -255..-128, 128..255

9 -511..-256, 256..511
10 -1023..-512, 512..1023
11 -2047..-1024, 1024..2047
12 -4095..-2048, 2048..4095

SSSSisthen coded from the selected DC VL C table. The VL Cisfollowed by a
VLI having SSSS bitsthat representsthe value of the differential DC coefficient
itself. If the coefficient is positive, the VLI issimply thelow-order bits of the
coefficient. If the coefficient isnegative, then the VLI isthe low-order bits of the
coefficient-1.

AC Coefficient Coding

Inasimilar fashion, AC coefficients are coded with alternating VLC and VLI
codes. The VL C table, however, isatwo-dimensional tablethat isindexed by a
composite 8-bit value. Thelower 4 bits of the 8-bit value, i.e. the columnindex, is
the number of significant bits, SSSS, of anon-zero AC coefficient. SSSSiscom-
puted through the same table asthat used for coding the DC coefficient. The
higher-order 4 bits, the row index, isthe number of zero coefficients, NNNN, that
precede the non-zero AC coefficient. Thefirst column of the two-dimensional
coding table contains codes that represent control functions. Figure 4 illustrates
the genera structure of the AC coding table.

SSSS- Sizeof Non-Zero AC Coefs

012.. 10 11...15
0 EOB
NNNN
Length -
of
Zero
Run
15 ZRL

Figure4. 2-D Run-SizeValue Array for AC Coefs
The shaded portions are undefined in the baseline process

Theflow chart in Figure 5 specifiesthe AC coefficient coding procedure. AC
coefficientsare coded by traversing the block in the zig-zag sequence and count-

99

TIFF 6.0 Specification

Final—June 3, 1992

ing the number of zero coefficients until anon-zero AC coefficient isencountered.
If the count of consecutive zero coefficients exceeds 15, then aZRL codeis coded
and the zero run-length count is reset. When anon-zero AC coefficient isfound,
the number of significant bitsin the non-zero coefficient, SSSS, is combined with
the zero run-length that precedesthe coefficient, NNNN, to form an index into the
two-dimensiona VLC table. The selected VL C isthen coded. The VLCisfol-
lowed by aVLI that representsthe value of the AC coefficient. Thisprocessis
repeated until the end of the block isreached. If thelast AC coefficient is zero,
then an End of Block (EOB) VL C isencoded.

Code (ZRL)
R=R-16
- Y R>157
N \
Code R,Coef (K)
R=0 Code (EOB)

"y
Done

Figure5. Encoding Procedurefor AC Coefs

JPEG Lossless Processes

The JPEG lossless coding processes utilize a spatial -predi ction a gorithm based
upon atwo-dimensional Differential Pulse Code Modulation (DPCM) technique.
They are compatible with awider range of input pixel precision thanthe DCT-
based algorithms (2 to 16 bits per component). Although the primary motivation
for specifying aspatia agorithmisto provide amethod for lossless compression,
JPEG dlowsfor quantization of theinput data, resulting inlossy compression and
higher compression rates.

Although JPEG providesfor use of either the Huffman or Arithmetic entropy-
coding models by the processesfor |osd ess coding, only the Huffman coding
model issupported by thisversion of TIFF. Thefollowingisabrief overview of
thelosdess process with Huffman coding.

100

TIFF 6.0 Specification

Final—June 3, 1992

Control Structure

Much of the control structure developed for the sequential DCT proceduresisalso
used for sequential lossless coding. Either interleaved or non-interleaved data
ordering may be used.

Coding Model

The coding model developed for coding the DC coefficients of the DCT isex-
tended to allow anumber of one-dimensional and two-dimensional predictorsfor
thelosdess coding function. Each component uses an independent predictor.

Prediction

Figure 6 showsthe rel ationship between the neighboring values used for predic-
tion and the sample being coded.

S S B
| | C| B |
S S B
| | Al Y| |
S S B

Figure 6. Relationship between sample and prediction samples

Y isthe sampleto becoded and A, B, and C are the samplesimmediately to the
left, immediately above, and diagonally to the left and above.

The alowed predictorsarelisted in the following table.
Selection-value Prediction

A+((B-C)/2)
B+((A-C)/2)
7 (A+B)/2
Selection-value 0 shall only be used for differential coding in the hierarchical
mode. Selections 1, 2 and 3 are one-dimensional predictors and selections 4, 5, 6,

and 7 aretwo dimensional predictors. The divide by 2 in the prediction equations
isdone by aarithmetic-right-shift of theinteger values.

0 no prediction (differential coding)
1 A

2 B

3 C

4 A+B-C

5

6

101

TIFF 6.0 Specification

Final—June 3, 1992

The difference between the prediction value and theinput is cal culated modulo
2**16. Therefore, the prediction can also betreated asamodulo 2** 16 value. In
the decoder the differenceis decoded and added, modulo 2** 16, to the prediction.

Huffman Coding of the Prediction Error

The Huffman coding procedures defined for coding the DC coefficients are used
to code the modulo 2** 16 differences. Thetablefor DC coding isextended to 17
entriesthat allowsfor coding of the modulo 2** 16 differences.

Point Transformation Prior to Lossless Coding

For thelossless processes only, the input image datamay optionally be scaled
(quantized) prior to coding by specifying anonzero valuein the point transforma-
tion parameter. Point transformation is defined to be division by apower of 2.

If the point transformation field is nonzero for acomponent, a point transforma-
tion of theinput is performed prior to thelossess coding. Theinput isdivided by
2**pt, where Ptisthe value of the point transform signaling field. The output of
the decoder isrescal ed to theinput range by multiplying by 2** Pt. Note that the
scaling of input and output can be performed by arithmetic shifts.

Overview of the JPEG Extension to TIFF

In extending the TIFF definition to include JPEG compressed data, it is necessary
to note thefollowing:

» JPEG iseffective only on continuous-tone color spaces:

Grayscale (Photometric Interpretation = 1)

RGB (Photometric Interpretation = 2)
CMYK (Photometric Interpretation=5) (Seethe CMYK Images section.)
YCC. (Photometric Interpretation=6) (Seethe Y CbCr images section.)

+ Color conversionto YC,C, isoften used as part of the compression process
because the chrominance components can be subsampled and compressed to a
greater degree without significant visual loss of quality. Fieldsare defined to
describe how this conversion has taken place and the degree of subsampling
employed (seethe Y CbCr Images section).

» New fields have been defined to specify the JPEG parameters used for com-
pression and to allow quanti zation tables and Huffman code tablesto beincor-
porated into the TIFFfile.

102

TIFF 6.0 Specification

Strips and Tiles

Final—June 3, 1992

» TIFFiscompatiblewith compressed image datathat conformsto the syntax of
the JPEG interchange format for compressed image data. Fields are defined
that may be utilized to facilitate conversion from TIFF to interchange format.

» ThePlanarConfiguration Field is used to specify whether or not the com-
pressed dataisinterleaved as defined by JPEG. For any of the JPEG DCT-
based processes, the interleaved data units are coded 8x8 blocks rather than
component samples.

 Although JPEG codes consecutive image blocksin asingle contiguous
bitstream, it isextremely useful to employ the concept of tilesin animage. The
TIFF Tiles section defines some new fieldsfor tiles. Thesefields should be
stored in place of the older fieldsfor strips. The concept of tiling animagein
both dimensionsisimportant because JPEG hardware may belimitedin the
size of each block that ishandled.

» Notethat the nomenclature used in the TIFF specification is different from the
JPEG Dréft International Standardittee Draft (1SO DIS 10918-1) in some
respects. Thefollowing terms should be equated when reading this Section:

TIFF name JPEG DISname

ImageWidth Number of Pixels

Imagelength Number of Lines

SamplesPerPixel Number of Components
JPEGQTable Quantization Table

JPEGDCTable Huffman Tablefor DC coefficients
JPEGACTable Huffman Tablefor AC coefficients

The JPEG extension to TIFF has been designed to be consistent with the existing
TIFF strip and tile structures and to alow quick conversion to and from the
stream-oriented compressed image format defined by JPEG.

Compressed images conforming to the syntax of the JPEG interchange format can
be converted to TIFF simply by defining asingle strip or tile for the entireimage
and then concatenating the TIFF image description fiel ds to the JPEG compressed
image data. The strip or tile offset field pointsdirectly to the start of the entropy
coded data (not to a JPEG marker).

Multiple strips or tiles are supported in JPEG compressed images using restart
markers. Restart markers, inserted periodically into the compressed image data,
delineate image segments known asrestart intervals. At the start of each restart
interval, the coding stateis reset to default values, allowing every restart interval
to be decoded independently of previously decoded data. TIFF strip and tile off-
setsshall aways point to the start of arestart interval. Equivalently, each strip or

103

TIFF 6.0 Specification Final—June 3, 1992

tile contains an integral number of restart intervals. Restart markers need not be
present inaTIFFfile; they areimplicitly coded at the start of every strip or tile.

To maximizeinterchangeability of TIFF fileswith other formats, arestrictionis
placed ontile height for files containing JPEG-compressed image data conform-
ing to the JPEG interchange format syntax. Therestriction, imposed only when
thetilewidth is shorter than the image width and when the
JPEGInterchangeFormat Field is present and non-zero, statesthat the tile height
must be equal to the height of one JPEG Minimum Coded Unit (MCU). This
restriction ensuresthat TIFF filesmay be converted to JPEG interchange format

without undergoing decompression.

Extensions to Existing Fields

Compression
Tag =259 (103.H)
Type =SHORT

N =1

ThisField indicatesthe type of compression used. Thenew valueis:

6=JPEG

JPEG Fields

JPEGProc

Tag =512 (200.H)
Type =SHORT

N =1

ThisField indicatesthe JPEG process used to produce the compressed data. The
valuesfor thisfield are defined to be consistent with the numbering convention
usedin ISO DIS 10918-2. Two values are defined at thistime.

1= Basdline sequential process
14= Losdessprocesswith Huffman coding

When the lossless process with Huffman coding is selected by thisField, the
Huffman tables used to encode the image are specified by the JPEGDCTables
field, and the JPEGACTablesfield isnot used.

Vauesindicating JPEG processes other than those specified above will be defined
inthefuture.

104

TIFF 6.0 Specification

Final—June 3, 1992

Not al of the fields described in this section are relevant to the JPEG process
selected by this Field. Thefollowing table specifiesthefieldsthat are applicable
to each value defined by thisField.

Tag Name JPEGProc =1 JPEGProc =14
JPEGI nterchangeFormat X X

JPEGI nterchangeFormatL ength X X
JPEGRegtart Interval X X

JPEGL osslessPredictors X
JPEGPointTransforms X
JPEGQTables X

JPEGDCTables X X
JPEGACTables X

ThisField ismandatory whenever the Compression Field is JPEG (no defaullt).

JPEGInterchangeFormat
Tag =513(201.H)

Type =LONG

N =1

ThisField indicateswhether a JPEG interchange format bitstream is present in the
TIFFfile. If aJPEG interchange format bitstream is present, then thisField points
to the Start of Image (SOI) marker code.

If thisField is zero or not present, a JPEG interchange format bitstream isnot
present.

JPEGInterchangeFormatLength
Tag =514(202.H)

Type =LONG

N =1

ThisField indicatesthe length in bytes of the JPEG interchange format bitstream.
ThisFieldisuseful for extracting the JPEG interchange format bitstream without
parsing the bitstream.

ThisFHeldisrdevant only if the JPEGInterchangeFormat Field ispresent and is
non-zero.

JPEGRestartinterval
Tag =515(203.H)
Type =SHORT

N =1

105

TIFF 6.0 Specification

Final—June 3, 1992

ThisField indicatesthe length of the restart interval used in the compressed image
data. Therestart interval is defined asthe number of Minimum Coded Units
(MCUs) between restart markers.

Restart intervalsare used in JPEG compressed imagesto provide support for
multiple stripsor tiles. At the start of each restart interval, the coding state is reset
to default values, allowing every restart interval to be decoded independently of
previously decoded data. TIFF strip and tile offsets shall always point to the start
of arestartinterval. Equivalently, each strip or tile contains an integral number of
restart intervals. Restart markers need not be present ina TIFFfile; they areim-
plicitly coded at the start of every strip or tile.

Seethe JPEG Draft International Standard (1SO DIS 10918-1) for moreinforma:
tion about the restart interval and restart markers.

If thisField iszero or isnot present, the compressed data does not contain restart
markers.

JPEGLosslessPredictors
Tag =517 (205.H)

Type =SHORT

N = SamplesPerPixel

ThisField pointsto alist of lossless predictor-selection values, one per compo-
nent.
The alowed predictors arelisted in the following table.

Sdlection-value Prediction

A
B

C

A+B-C
A+((B-0)12)
B+((A-C)/2)
(A+B)/2

N O ok W0ODN B

A, B, and C arethe samplesimmediately to the left, immediately above, and
diagonally to theleft and above the sampleto be coded, respectively.

Seethe JPEG Draft International Standard (1SO DIS 10918-1) for more details.

ThisField ismandatory whenever the JPEGProc Field specifies one of the
losdless processes (no default).

JPEGPointTransforms
Tag =518(206.H)

Type =SHORT

N = SamplesPerPixel

106

TIFF 6.0 Specification

Final—June 3, 1992

ThisField pointsto alist of point transform val ues, one per component. ThisField
isrelevant only for lossless processes.

If the point transformation value is nonzero for acomponent, a point transforma-
tion of theinput is performed prior to the lossless coding. Theinput is divided by
2**Pt, where Ptisthe point transform value. The output of the decoder isrescaled
to theinput range by multiplying by 2** Pt. Note that the scaling of input and
output can be performed by arithmetic shifts.

Seethe JPEG Draft International Standard (1SO DIS 10918-1) for more details.
The default value of thisField is O for each component (no scaling).

JPEGQTables

Tag =519(207.H)
Type =LONG

N = SamplesPerPixel

ThisField pointsto alist of offsetsto the quantization tables, one per component.
Eachtable consistsof 64 BY TES (onefor each DCT coefficient in the 8x8 block).
The quantization tables are stored in zigzag order.

Seethe JPEG Draft International Standard (1SO DIS 10918-1) for more details.

It isstrongly recommended that, within the TIFF file, each component be assigned
separate tables. ThisField is mandatory whenever the JPEGProc Field specifiesa
DCT-based process (no defaullt).

JPEGDCTables
Tag =520(208.H)
Type =LONG

N = SamplesPerPixel

ThisField pointsto alist of offsetsto the DC Huffman tables or the losdess
Huffman tables, one per component.

Theformat of each tableisasfollows:
16 BYTESof “BITS’, indicating the number of codes of lengths 1 to 16;

Upto 17 BYTESof “VALUES’, indicating the values associated with
those codes, in order of length.

Seethe JPEG Draft International Standard (1SO DIS 10918-1) for more details.

It isstrongly recommended that, within the TIFF file, each component be assigned
separate tables. ThisField ismandatory for all JPEG processes (no defaullt).

JPEGACTables
Tag =521(209.H)
Type =LONG

N = SamplesPerPixel

107

TIFF 6.0 Specification

Final—June 3, 1992

ThisField pointsto alist of offsetsto the Huffman AC tables, one per component.
Theformat of each tableisasfollows:

16 BYTESof “BITS’, indicating the number of codes of lengths 1 to 16;

Upto 256 BY TES of “VALUES’, indicating the values associated with
those codes, in order of length.

Seethe JPEG Draft International Standard (1SO DIS 10918-1) for more details.

It isstrongly recommended that, within the TIFF file, each component be assigned
separate tables. This Field is mandatory whenever the JPEGProc Field specifiesa
DCT-based process (no default).

108

TIFF 6.0 Specification

Final—June 3, 1992

Minimum Requirements for TIFF with JPEG Compression

References

Thetable on the following page shows the minimum requirements of aTIFFfile
that usestiling and contains JPEG data compressed with the Baseline process.

Tag = NewSubFi | eType (254) Single i mge
Type = Long

Length = 1

Value =0

Tag = | mgeWdth (256)

Type = Long

Length = 1

Value =7?

Tag = | mgeLength (257)

Type = Long

Length = 1

Value =7?

Tag = BitsPerSanpl e (258) 8 : Monochrone
Type = Short 8,8,8: R®B
Length = Sanpl esPer Pi xel 8,8,8 : YChCr
Value =7? 8,888 : CWK
Tag = Conpressi on (259) 6 : JPEG conpression
Type = Long

Length = 1

Value =6

Tag = Photonetriclnterpretation (262) 0,1 : Monochrome
Type = Short 2: R&B

Length = 1 5: OWK

Value =7? 6 : YOO

Tag = Sanpl esPer Pi xel (277) 1 : Monochrone
Type = Short 3: RB

Length = 1 3 YOO

Value =7? 4 . OwWK

Tag = XResol ution (282)

Type = Rational

Length = 1

Value =7?

Tag = YResol ution (283)

Type = Rational

Length = 1

Value =7?

Tag = Planar Configuration (284) 1 : Block Interleaved
Type = Short 2 : Not interleaved
Length = 1

Value =7?

Tag = Resol utionUnit (296)

Type = Short

Length = 1

Value =7?

Tag = TileWdth (322) Mil tiple of 8
Type = Short

Length = 1

Value =?

Tag = TileLength (323) Mil tiple of 8
Type = Short

Length = 1

Value =7?

Tag = TileOfsets (324)

Type = Long

Length = Nunber of tiles

Value =7?

Tag = TileByteCounts (325)

Type = Long

Length = Nunber of tiles

Value =7?

Tag = JPEGProc (512) 1 : Baseline process
Type = Short

Length = 1

Value =7?

Tag = JPEQQTabl es (519) Offsets to tables
Type = Long

Length = Sanpl esPer Pi xel

Value =7?

Tag = JPEGDCTabl es (520) Offsets to tables
Type = Long

Length = Sanpl esPer Pi xel

Value =7?

Tag = JPEGACTabl es (521) Offsets to tables
Type = Long

Length = Sanpl esPer Pi xel

Value =7?

[1] Wallace, G., “ Overview of the JPEG Still Picture Compression Algorithm”,

Electronic Imaging East ' 90.

[2] ISO/IEC DIS 10918-1, “Digital Compression and Coding of Continuous-tone

Still Images”, Sept. 1991.

109

TIFF 6.0 Specification Final—June 3, 1992

Section 23: CIE L*a*b* Images

What is CIE L*a*b*?

CIE La*b* isacolor spacethat is colorimetric, has separate lightness and chroma
channels, and is approximately perceptually uniform. It has excellent applicability
for device-independent manipulation of continuoustone images. These attributes

make it an excellent choice for many image editing functions.

1976 CIEL*a*b* isrepresented as a Euclidean space with the following three
quantities plotted along axes at right angles: L* representing lightness, a* repre-
senting the red/green axis, and b* representing the yellow/blue axis. Theformulas
for 1976 CIE L*a*b* follow:

L*=116(Y/Y,)V3-16 for Y/Y,, > 0.008856
L*=903.3(Y/Y,) for Y/Y,, <= 0.008856 * see note below.

a*=500[(X/X) V3-(Y/Y,) 13|
b*=200[(Y/Y,)Y3-Z/2,)3].

where X Y ,andZ arethe CIE X, Y, and Z tristimulus values of an appropriate
referencewhite. Also, if any of theratios X/X , Y/Y , or Z/Z isequal to or lessthan
0.008856, it isreplaced in theformulaswith

7.787F + 16/116,

whereF isX/X , YIY , or ZIZ , as appropriate (note: these low-light conditions are
of no relevance for most document-imaging applications). Tiff isdefined such
that each quantity be encoded with 8 bits. This provides 256 levelsof L* lightness;
256 levels (+/- 127) of a*, and 256 levels (+/- 127) of b*. Dividing the 0-100
range of L* into 256 levels provideslightness stepsthat are lessthan half the size
of a“just noticeable difference”. Thiseliminates banding, even under conditions
of substantial tonal manipulation. Limiting the theoretically unbounded a* and b*
rangesto +/- 127 allowsencoding in 8 bitswithout eliminating any but the most
saturated self-luminous colors. It isanticipated that the rare specialized applica
tions requiring support of these extreme caseswould be unlikely touse CIELAB
anyway. All object colors, infact al colorswithin the theoretical MacAdam lim-
its, fall withinthe +/- 127 a*/b* range.

110

TIFF 6.0 Specification Final—June 3, 1992

The TIFF CIELAB Fields

Photometricinterpretation
Tag =262(106.H)

Type =SHORT

N =1

8= 1976 CIE L*a*b*

Usage of other Fields.
BitsPerSample: 8

SamplesPerPixel - ExtraSamples: 3for L*a*b*, 1 impliesL* only, for mono-
chrome data.

Compression: same as other multi-bit formats. JPEG compression applies.
PlanarConfiguration: both chunky and planar data could be supported.
WhitePoint: does not apply

PrimaryChromaticities: does not apply.

TransferFunction: does not apply

AlphaChannel information will follow the lead of other datatypes.

The reference white for thisdatatypeisthe perfect reflecting diffuser (100%
diffusereflectance at dl visiblewavelengths). TheL* rangeisfrom O (perfect
absorbing black) to 100 (perfect reflecting diffuse white). Thea* and b* ranges
will berepresented as signed 8 bit values having therange-127 to +127.

Converting between RGB and CIELAB, a Caveat

The above CIELAB formulae are derived from CIE XYZ. Converting from
CIELAB to RGB requires an additional set of formulaefor converting between
RGB and XYZ. For standard NTSC primariesthese are:

0.6070 0.1740 0.2000 R X

0.2990 0.5870 0.1140 * G =Y

0.0000 0.0660 1.1110 B z

Generaly, D65 illumination isused and a perfect reflecting diffuser isused for the
reference white.

Since CIELAB isnot adirectly displayable format, some conversion to RGB will
be required. While look-up table accelerated CIELAB to RGB conversionis
certainly possible and fast, TIFF writersmay chooseto include alow resolution
RGB subfileasan integral part of TIFF CIELAB.

111

TIFF 6.0 Specification

Final—June 3, 1992

Color Difference Measurements in CIELAB

The differences between two colorsin L*, a*, and b* are denoted by DL*, Da*,
and Db*, respectively, with thetotal (3-dimensional) color difference represented
as.

DB 4= [(AE*2+(0ar) 2+ (ab*] V2

Thiscolor difference can aso be expressed in termsof L*, C*, and a measure of
hue. Inthiscase, h isnot used becauseit isan angular measure and cannot be
combined with L* and C* directly. A linear-distance form of hueisusedinstead:

CIE 1976 a,b hue-difference, AH*)
AH* g, = [(AE*)2-(AL7)2-(aC)?] V2

where DC* isthe chromadifference between the two colors. Thetotal color dif-
ference expression using thishue-differenceis:

DB = [(AL%)2+(H*)2+(2b+)2] 12,

It isimportant to remember that color differenceis 3-dimensional: much more can
belearned from aDL*a*b* triplet than from asingle DE value. The DL* C*H*
formisoften the most useful sinceit givesthe error information in aform that has
more familiar perception correlates. Cautionisin order, however, when using
DH* for large hue differences sinceit isa straight-line approximation of acurved
hue distance.

The Merits of CIELAB

Colorimetric.

First and foremost, CIELAB iscolorimetric. It istraceableto the internationally-
recognized standard CIE 1931 Standard Observer. Thisinsuresthat it encodes
color inamanner that is accurately modeled after the human vision system. Col-
ors seen as matching are encoded identically, and colors seen as not matching are
encoded differently. CIEL AB provides an unambiguous definition of color with-
out the necessity of additional information such aswith RGB (primary
chromaticities, white point, and gamma curves).

Device Independent.

Unlike RGB spaces which associate closely with physical phosphor colors,
CIELAB contains no device association. CIELAB isnot tailored for one device or
devicetype at the expense of all others.

112

TIFF 6.0 Specification

Final—June 3, 1992

Full Color Gamut.

Any oneimage or imaging device usually encountersavery limited subset of the
entire range of humanly-perceptible color. Collectively, however, theseimages
and devices span amuch larger gamut of color. A truly versatile exchange color
space should encompass al of these colors, ideally providing support for al vis-
ible color. RGB, PhotoY CC, Y CbCr, and other display spaces suffer from gamut
limitationsthat exclude significant regions of easily printable colors. CIELAB is
defined for all visiblecolor.

Efficiency

A good exchange space will maximize accuracy of trandations between itself and
other spaces. It will represent colors compactly for agiven accuracy. These at-
tributes are provided through visua uniformity. One of the greatest disadvantages
of the classic CIE system (and RGB systemsaswell) isthat colorswithin it are not
equally spaced visually. Encoding full-color imagesin alinear-intensity space,
such asthetypical RGB space or, especially, the XY Z space, requiresavery large
range (greater than 8-bits/primary) to eliminate banding artifacts. Adopting anon-
linear RGB spaceimprovesthe efficiency but not nearly to the extent aswith a
perceptually uniform space where these problems are nearly eliminated. A uni-
form spaceisalso more efficiently compressed (see below).

Public Domain / Single Standard

CIELAB maintains no preferential attachmentsto any private organization. Its
existence asasingle standard leaves no room for ambiguity. Since 1976, CIELAB
has continually gained popul arity as awidely-accepted and heavily-used standard.

Luminance/Chrominance Separation.

The advantages for image size compression made possible by having aseparate
lightness or luminance channel areimmense. Many such spacesexist. The degree
to which the luminanceinformation isfully-isolated into asingle channel isan
important consideration. Recent studies (Kasson and Plouffe of IBM) support
CIELAB asaleading candidate placing it above CIELUV, YIQ, YUV, YCC, and
XYZ.

Other advantages support a separate lightness or luminance channel. Tone and
contrast editing and detail enhancement are most easily accomplished with such a
channel. Conversion to ablack and white representation is also easiest with this
type of space.

When the chrominance channel s are encoded as opponents aswith CIELAB,
there are other compression, image manipulation, and white point handling ad-
vantages.

113

TIFF 6.0 Specification

Final—June 3, 1992

Compressibility (Data).

Opponent spaces such as CIELAB areinherently more compressible than
tristimulus spaces such as RGB. The chroma content of an image can be com-
pressed to agreater extent, without objectionable loss, than can the lightness con-
tent. The opponent arrangement of CIELAB allowsfor spatial subsampling and
efficent compression using JPEG.

Compressibility (Gamut).

Adjusting the color range of an image to match the capabilities of theintended
output deviceisacritical function within computational color reproduction. Lu-
minance/chrominance separation, especially when provided inapolar form, is
desirablefor facilitating gamut compression. Accurate gamut compressionina
tri-linear color spaceisdifficult.

CIELAB hasapolar form (metric hue angle, and metric chroma, described be-
low) that serves compression needsfairly well. Because CIELAB isnot perfectly
uniform, problems can arise when compressing al ong constant hue lines. Notice-
able hue errors are sometimesintroduced. This problem isno less severe with
other contending color spaces.

Thispolar form also provides advantagesfor local color editing of images. The
polar formisnot proposed as part of the TIFF addition.

Getting the Most from CIELAB

Image Editors

The advantages of image editing within a perceptually uniform polar color space
aretremendous. A detailed description of these advantagesis beyond the scope of
this section. As previously mentioned, many common tonal manipul ation tasks
aremost efficiently performed when only asingle channel isaffected. Edge en-
hancement, contrast adjustment, and general tone-curve manipulation all ideally
affect only the lightness component of animage.

A perceptual polar space works excellently for specifying acolor range for mask-
ing purposes. For example, ared shirt can be quickly changed to agreen shirt
without drawing an outline mask. The operation can be performed with aloosely,
quickly-drawn mask region combined with ahue (and perhaps chroma) range that
encompasses the shirt’ s colors. The hue component of the shirt can then be ad-
justed, leaving the lightness and chromadetail in place.

Color cast adjustment iseasily realized by shifting either or both of the chroma
channels over the entire image or blending them over the region of interest.

Converting from CIELAB to a device specific space

For fast conversion to an RGB display, CIEL AB can be decoded using 3x3
matrixing followed by gamma correction. The computational complexity required

114

TIFF 6.0 Specification

Final—June 3, 1992

for accurate CRT display isthe samewith CIELAB aswith extended luminance-
chrominance spaces.

Converting CIELAB for accurate printing on CMY K devices requires computa-
tional complexity no greater than with accurate conversion from any other colori-
metric space. Gamut compression becomes one of the more significant tasksfor
any such conversion.

115

TIFF 6.0 Specification Final—June 3, 1992

Part 3: Appendices

Part 3 contains additional information that isnot part of the TI1FF specification,
but may be of useto developers.

116

TIFF 6.0 Specification

Final—June 3, 1992

Appendix A: TIFF Tags Sorted by Number

TagName Decimal Hex Type Number of values
NewSubfileType 254 FE LONG 1
SubfileType 255 FF SHORT 1
ImageWidth 256 100 SHORT or LONG 1
ImageL ength 257 101 SHORT or LONG 1
BitsPerSample 258 102 SHORT SamplesPerPixel
Compression 259 103 SHORT 1

Uncompressed 1

CCITT 1D 2

Group 3 Fax 3

Group 4 Fax 4

LzZwW 5

JPEG 6

PackBits 32773
Photometriclnterpretation 262 106 SHORT 1

WhitelsZero 0

BlacklsZero 1

RGB 2

RGB Palette 3

Transparency mask 4

CMYK 5

Y CbCr 6

CIELab 8
Threshholding 263 107 SHORT 1
CdlWidth 264 108 SHORT 1
CellLength 265 109 SHORT 1
FillOrder 266 10A SHORT 1
DocumentName 269 10D ASCII
ImageDescription 270 10E ASCII
Make 271 10F ASCII
Model 272 110 ASCII
StripOffsets 273 111 SHORT or LONG StripsPerlmage
Orientation 274 112 SHORT 1
SamplesPerPixel 277 115 SHORT 1
RowsPerStrip 278 116 SHORT or LONG 1
StripByteCounts 279 117 LONG or SHORT StripsPerlmage
MinSampleValue 280 118 SHORT SamplesPerPixel
MaxSampleVaue 281 119 SHORT SamplesPerPixel
XResolution 282 11A RATIONAL 1
Y Resolution 283 11B RATIONAL 1
PlanarConfiguration 284 11C SHORT 1
PageName 285 11D ASCII
XPosition 286 11E RATIONAL
Y Position 287 11F RATIONAL
FreeOffsets 288 120 LONG
FreeByteCounts 289 121 LONG
GrayResponseUnit 290 122 SHORT 1

117

TIFF 6.0 Specification

GrayResponseCurve
T4Options
T60ptions
ResolutionUnit
PageNumber
TransferFunction

Software
DateTime
Artist
HostComputer
Predictor
WhitePoint
PrimaryChromaticities
ColorMap
HalftoneHints
TileWidth
TileLength
TileOffsets
TileByteCounts
InkSet
InkNames

NumberOfinks
DotRange

TargetPrinter
ExtraSamples

SampleFormat
SMinSampleValue
SMaxSampleVaue
TransferRange
JPEGProc

JPEGI nterchangeFormat
JPEGI nterchangeFormatL ngth
JPEGRestartInterval
JPEGL osdessPredictors
JPEGPoaintTransforms
JPEGQTables
JPEGDCTables
JPEGACTables

Y CbCrCoefficients

Y CbCrSubSampling

Y CbCrPositioning
ReferenceBlackWhite
Copyright

291
292
293
296
297
301

305
306
315
316
317
318
319
320
321
322
323
324
325
332
333

334
336

337
338

339
340
341
342
512
513
514
515
517
518
519
520
521
529
530
531
532
33432

118

123
124
125
128
129
12D

131
132
13B
13C
13D
13E
13F
140
141
142
143
144
145
14C
14D

14E
150

151
152

153
154
155
156
200
201
202
203
205
206
207
208
209
211
212
213
214
8298

SHORT
LONG
LONG
SHORT
SHORT
SHORT

ASCII

ASCII

ASCII

ASCII

SHORT
RATIONAL
RATIONAL
SHORT

SHORT

SHORT or LONG
SHORT or LONG
LONG

SHORT or LONG
SHORT

ASCII

SHORT
BYTE or SHORT

ASCII
BYTE

SHORT
Any
Any
SHORT
SHORT
LONG
LONG
SHORT
SHORT
SHORT
LONG
LONG
LONG
RATIONAL
SHORT
SHORT
LONG
ASCII

Final—June 3, 1992

2**BitsPerSample
1

1

1

2

{lor
SamplesPerPixd}*
2** BitsPerSample

20

* (2**BitsPerSample)

PP NWOWON R

TilesPerlmage
TilesPerlmage

1

total number of charac
tersindl ink name
drings, including zeros
1

2,0r2*
NumberOfinks

any

number of extracompo-
nents per pixel
SamplesPerPixel
SamplesPerPixel
SamplesPerPixel

6

R

SamplesPerPixel
SamplesPerPixel
SamplesPerPixel
SamplesPerPixel
SamplesPerPixel
3

2

1
2*SamplesPerHxel
Any

TIFF 6.0 Specification Final—June 3, 1992

Appendix B: Operating System
Considerations

Extensions and Filetypes

Therecommended MS-DOS, UNIX, and OS/2 fileextensionfor TIFF filesis
“TIF.

On an Apple Macintosh computer, the recommended Filetypeis“TIFF". Itisa
good ideato aso name TIFF fileswitha“. TIF” extension so that they can easily
imported if transferred to adifferent operating system.

119

TIFF 6.0 Specification

Index

Symbols
42 13
A

Aldus Developers Desk 8

alpha data 31
associated 69

ANSIIT8 71

Appendices 116

AppleLink 8

Artist 28

ASCIl 15

B

Baseline TIFF 11
big-endian 13
BitsPerSample 22, 29
Blacklszero 17, 37
BYTE data type 15

C

CCITT 17, 30, 49
CellLength 29
Cellwidth 29
chunky format 38
CIELAB images 110
clarifications 6
ClassB 21

Class G 22

Class P 23
ClassR 25
Classes 7

CMYK Images 66
ColorMap 23, 29

ColorResponseCurves. See

TransferFunction
compatibility 6
compliance 12
component 28

compositing. See alpha data:

associated

compression 17, 30
CCITT 49
JPEG 95
LZW 57
Modified Huffman 43
PackBits 42
CompuServe 8
Copyright 31
Count 14, 15, 16

D

DateTime 31

default values 28
Differencing Predictor 64
DocumentName 55
DotRange 71

DOUBLE 16

Duff, Tom 79

E
ExtraSamples 31, 77
F

Facsimile 49

file extension 119
filetype 119
FillOrder 32
FLOAT 16
FreeByteCounts 33
FreeOffsets 33

G

GrayResponseCurve 33, 73, 85
GrayResponseUnit 33
Group 3 17, 30
Group30Options 51
Group4Options 52

H

HalftoneHints 72
Hexadecimal 12
high fidelity color 69
HostComputer 34

120

Final—June 3, 1992

IFD. See image file directory
I 13

image 28

image file directory 13, 14
image file header 13
ImageDescription 34
ImageLength 18, 27, 34
ImageWidth 18, 27, 34
InkNames 70

InkSet 70

J

JPEG compression 95

baseline 95

discrete cosine trans-

form 95

entropy coding 98

lossless processes 100

guantization 97
JPEGACTables 107
JPEGDCTables 107
JPEGInterchangeFormat 105
JPEGiInterchangeFormatLength 105
JPEGLosslessPredictors 106
JPEGPointTransforms 106
JPEGProc 104
JPEGQTables 107
JPEGRestartinterval 105

K
no entries
L

little-endian 13
LONG data type 15
LZW compression 57

M
Make 35
matting. See alpha data: associ-

ated
MaxComponentValue 35
MaxSampleValue. See

MaxComponentValue
MinComponentValue 35

TIFF 6.0 Specification

MinSampleValue. See
MinComponentValue

MM 13

Model 35

Modified Huffman compres-
sion 17, 30, 43

multi-page TIFF files 36

multiple strips 39

N

NewSubfileType 36
NumberOfinks 70

O

Offset 15
Orientation 36

P

PackBits compression 42
PageName 55
PageNumber 55
palette color 23, 29, 37
Photometricinterpretation 17, 32, 37
pixel 28
planar format 38
PlanarConfiguration 38
Porter, Thomas 79
Predictor 64
PrimaryChromaticities 83
private tags 8
proposals

submitting 9

Q

no entries

R

RATIONAL data type 15
reduced resolution 36
ReferenceBlackWhite 86
ResolutionUnit 18, 27, 38
revision notes 4

RGB images 37

row interleave 38
RowsPerStrip 19, 27, 39, 68

S

sample. See component
SampleFormat 80
SamplesPerPixel 39

SBYTE 16

separated images 66

SHORT data type 15

SLONG 16

Software 39

SRATIONAL 16

SSHORT 16

StripByteCounts 19, 27, 40

StripOffsets 19, 27, 40

StripsPerimage 39

subfile 16

SubfileType 40. See also
NewSubfileType

T

T4Options 51
T60ptions 52
tag 14
TargetPrinter 71
Threshholding 41
TIFF
administration 8
Baseline 11
Class P 23
ClassR 24
Classes 17
consulting 8
extensions 48
history 4
other extensions 9
sample Files 20
scope 4
structure 13
tags - sorted 117
TIFF Advisory Committee 9
TileByteCounts 68
TileLength 67
TileOffsets 68
Tiles 66
TilesPerlmage 67, 68
TileWidth 67
TransferFunction 84
TransferRange 86
transparency mask 36, 37
type of afield 14

U
UNDEFINED 16
\%

no entries

121

Final—June 3, 1992

W

WhitelsZero 17, 37
WhitePoint 83

X

XPosition 55
XResolution 19, 27, 41

Y

YCbCr images 87, 89
YCbCrCoefficients 91
YCbCrPositioning 92
YCbCrSubSampling 91
YPosition 56
YResolution 19, 41

Z

no entries

	Cover
	Contents
	Introduction
	Part 1: Baseline TIFF
	Section 1: Notation
	Section 2: TIFF Structure
	Section 3: Bilevel Images
	Section 4: Grayscale Images
	Section 5: Palette-color Images
	Section 6: RGB Full Color Images
	Section 7: Additional Baseline TIFF Requirements
	Section 8: Baseline Field Reference Guide
	Section 9: PackBits Compression
	Section 10: Modified Huffman Compression

	Part 2: TIFF Extensions
	Section 11: CCITT Bilevel Encodings
	Section 12: Document Storage and Retrieval
	Section 13: LZW Compression
	Section 14: Differencing Predictor
	Section 15: Tiled Images
	Section 16: CMYK Images
	Section 17: HalftoneHints
	Section 18: Associated Alpha Handling
	Section 19: Data Sample Format
	Section 20: RGB Image Colorimetry
	Section 21: YCbCr Images
	Section 22: JPEG Compression
	Section 23: CIE L*a*b* Images

	Part 3: Appendices
	Appendix A: TIFF Tags Sorted by Number
	Appendix B: Operating System Considerations

	Index

